Not logged in.  Login/Logout/Register | List snippets | | Create snippet | Upload image | Upload data

93
LINES

< > BotCompany Repo | #329 // Simple perceptron [not really a perceptron]

Lua code - Snippet producer

1  
get("#265") -- json.encode
2  
3  
images = {"#1000061", "A", "#1000056", "H", "#1000064", "P", "#1000063", "X", "#1000062", "B"}
4  
features = {"#326", "#327", "#328"}
5  
6  
-- make a letter lookup map
7  
image2letter = {}
8  
for i=1, #images, 2 do image2letter[images[i]] = images[i+1] end
9  
10  
-- find out which results to load
11  
toget = {}
12  
for i=1, #images, 2 do table.insert(toget, images[i]) end
13  
for i=1, #features do table.insert(toget, features[i]) end
14  
results = getirresults(unpack(toget))
15  
16  
--map: feature -> letter -> value range
17  
18  
map = {}
19  
for image, subresults in pairs(results) do
20  
  letter = image2letter[image]
21  
  for feature, result in pairs(subresults) do
22  
    _, _, value = string.find(result, ": ([0-9.]+)")
23  
    if value ~= nil then
24  
      value = tonumber(value)
25  
      if map[feature] == nil then map[feature] = {} end
26  
      submap = map[feature]
27  
      range = submap[letter]
28  
      if range == nil then
29  
        range = {value, value}
30  
      else
31  
        range = {math.min(range[1], value), math.max(range[2], value)}
32  
      end
33  
      submap[letter] = range
34  
    end
35  
  end
36  
end
37  
38  
-- get serpent to serialize map into Lua code
39  
serpent = go("#158")
40  
41  
--if all features are within the known value ranges for the letter, just take the intersection of all the matching letters within each feature.
42  
43  
-- serpent options:
44  
-- block(map, {comment=false}) is that indented stuff
45  
-- line(map, {comment=false}) is all in one line
46  
-- dump(map) is...?
47  
-- line(map, {comment=false, compact=true, sparse=true}) is in one line, very compact
48  
-- line(map, {comment=false, compact=true, sparse=false}) is the same
49  
50  
recognizer = "  map = "..serpent.line(map, {comment=false, compact=true, sparse=false}).."\n"..[[
51  
  allletters = {}
52  
  outmap = {}
53  
  
54  
  for feature, submap in pairs(map) do
55  
    f = otherresults[feature]
56  
    if f == nil then error("Need recalc, waiting for "..feature) end
57  
    _, _, value = string.find(f, ": ([0-9.]+)")
58  
    if value ~= nil then
59  
      value = tonumber(value)
60  
      for letter, range in pairs(submap) do
61  
        allletters[letter] = true
62  
        if value < range[1] or value > range[2] then
63  
          outmap[letter] = true -- can't be this letter
64  
        end
65  
      end
66  
    end
67  
  end
68  
  
69  
  candidates = {}
70  
  for letter, _ in pairs(allletters) do
71  
    if not outmap[letter] then
72  
      table.insert(candidates, letter)
73  
    end
74  
  end
75  
  
76  
  if #candidates ~= 0 then
77  
    return "Candidates: "..table.concat(candidates, ", ")
78  
  end
79  
]]
80  
81  
print(recognizer)
82  
83  
snippet = {
84  
  type = 26, -- Lua code - Image recognition
85  
  text = recognizer,
86  
  title = "A machine-made letter recognizer, v3"
87  
}
88  
89  
return json.encode(snippet)
90  
91  
--todo: otherwise, expand all value ranges uniformly and try again.
92  
93  
--more todo: repeat & increase ranges exponentially, finally at least one letter will match.

Author comment

I'm redefining the term PERCEPTRON... ^^

It means a production facility for a general "decider" based on a list of examples and feature extractors.

test run  test run with input  produce a snippet  download  show line numbers   

Travelled to 12 computer(s): aoiabmzegqzx, bhatertpkbcr, cbybwowwnfue, gwrvuhgaqvyk, ishqpsrjomds, lpdgvwnxivlt, mqqgnosmbjvj, pyentgdyhuwx, pzhvpgtvlbxg, tslmcundralx, tvejysmllsmz, vouqrxazstgt

No comments. add comment

Image recognition results

Recognizer Recognition Result Visualize Recalc
#308 javax.imageio.IIOException: Can't get input stream from URL! [visualize]

Snippet ID: #329
Snippet name: Simple perceptron [not really a perceptron]
Eternal ID of this version: #329/2
Text MD5: bd993491c90d73e238bdb59189c62608
Author: stefan
Category: meta letter recognizers
Type: Lua code - Snippet producer
Public (visible to everyone): Yes
Archived (hidden from active list): No
Created/modified: 2017-09-05 17:12:14
Source code size: 2846 bytes / 93 lines
Pitched / IR pitched: No / No
Views / Downloads: 1086 / 187
Version history: 1 change(s)
Referenced in: [show references]