function [rep_motion motion_vector] = fastMV(im1, im2, w) % Author: Arash Jalalian % E-mail: arash.jalalian@gmail.com % Arguments: [rep_motion motion_vector] = fastMV(im1, im2, w) % This is the simplified block matching algorithm(BMA) which is proposed by % L. Hao. I've simplified this algorithm for use it in a real-time problem. % We have a dynamic search pattern during finding the motion vector. % 1. check with big diamond. % 2. check with one of the hexagon subject to previous results. % 3. check with small diamond. % 'im1' is base frame of a video and 'im2' is the second frame. and 'w' is % the window size. 'rep_motion' is the representative motion vector and % 'motion_vector' declare motion vectors for each block of image. % Example: % im1 = imread('frame001.jpg'); % im2 = imread('frame002.jpg'); % w = 16; % [rep_m m_vector] = fastMV(im1, im2, w); % clear all % close all % clc % im1 = imread('img_1057.pgm'); % im2 = imread('img_1058.pgm'); % % dis = 2; % w = 8; % initialization [r1 c1] = size(im1); [r2 c2] = size(im2); if r1 ~= r2 || c1 ~= c2 error('The images must be in a same size') end pat.org = [0; 0]; pat.diam1 = [2 0 -2 0; 0 2 0 -2];%big diamond pat.diam2 = [1 0 -1 0; 0 1 0 -1];%small diamond pat.hexver = [2 1 -1 -2 -1 1; 0 2 2 0 -2 -2]; pat.hexhor = [2 0 -2 -2 0 2 ;1 2 1 -1 -2 -1]; r_time = int16(floor(r1 ./ w)); c_time = int16(floor(c1 ./ w)); % for preventing index exceeding from end of image. 4 is the maximum % Magnitude of the motion vector if mod(r1, w) < 4 r_time = r_time -1; end if mod(c1, w) < 4 c_time = c_time -1; end slice1 = cell(r_time, c_time); slice2 = cell(r_time, c_time); motion_vector = cell(r_time, c_time); % creating slices with cell array of slices for i = 1:r_time for j = 1:c_time slice1{i, j} = im1(((i-1) * w) + 1:i * w, ((j-1) * w) + 1:j * w); slice2{i, j} = im2(((i-1) * w) + 1:i * w, ((j-1) * w) + 1:j * w); end end % first step checking with 4 points of big diamond and the origin mad_org = zeros(r_time, c_time); min_mad = zeros(r_time, c_time); idx_min_mad = zeros(r_time, c_time); for i = 1:r_time for j = 1:c_time s_h_r = ((i-1) * w) + 1;%slice head row s_h_c = ((j-1) * w) + 1;%slice head column diff.org{i, j} = abs(slice2{i, j} - slice1{i, j}); [r_diam c_diam] = size(pat.diam1); for k = 1:c_diam if s_h_r + pat.diam1(1, k) > 0 && s_h_c + pat.diam1(2, k) > 0 diff.diam1{1, k} = abs(slice1{i, j}- im2(s_h_r + pat.diam1(1, k):... i *w + pat.diam1(1, k),... s_h_c + pat.diam1(2, k):... j * w + pat.diam1(2, k))); % calculating MAD = Mean Absolute Difference diff.diam1{2, k} = sum(sum(diff.diam1{1,k})) / (w ^ 2);% insert each MAD below each Pat mad(k) = sum(sum(diff.diam1{1,k})) / (w ^ 2); else diff.diam1{1, k} = 9999999999999; diff.diam1{2, k} = 9999999999999; mad(k) = sum(sum(diff.diam1{1,k})) / (w ^ 2); end end % calculating minimum of mad in 4 pat and the origin and inserting % them into a min_mad(i, j). where i, j decler the position of the % slice in the image mad_org(i , j) = sum(sum(diff.org{i,j})) / (w ^ 2); mad = [mad mad_org(i, j)]; [min_mad(i, j) idx_min_mad(i, j)] = min(mad); clear mad end end % if the idx_min_mad == 5 it means that the origin has the minimum value of % mad (between 4 big diamond points and the origin the orogin has the % minimum value) otherwise the index in idx_min_mad shows the pat index that % has the min mad value. idx_min_mad2 = zeros(r_time, c_time); min_mad2 = zeros(r_time, c_time); for i = 1:r_time for j = 1:c_time clear mad if idx_min_mad(i, j) == 5 % it means this point didn't moved and it's better to do not use % any motion vectors so we must put [0; 0] for these points as a % motion vector.accourding to the paper for any slices that % idx_min_mad(i, j) ==5 we must use anothe four points as new % pat and check the slices with these i and j for mad. and the % final solution for these slices is these mad. here we must % use pat.diam2 as new patterns and repeat thise process again. s_h_r = ((i-1) * w) + 1;%slice head row s_h_c = ((j-1) * w) + 1;%slice head column % diff.org{i, j} = abs(slice2{i, j} - slice1{i, j}); [r_diam c_diam] = size(pat.diam1); for k = 1:c_diam if s_h_r + pat.diam2(1, k) > 0 && s_h_c + pat.diam2(2, k) > 0 diff.diam2{1, k} = abs(slice1{i, j}- im2(s_h_r + pat.diam2(1, k):... i *w + pat.diam2(1, k),... s_h_c + pat.diam2(2, k):... j * w + pat.diam2(2, k))); % calculating MAD = Mean Absolute Diffrence diff.diam2{2, k} = sum(sum(diff.diam2{1,k})) / (w ^ 2);% insert each MAD below each Pat mad(k) = sum(sum(diff.diam2{1,k})) / (w ^ 2); else diff.diam2{1, k} = 9999999999999; diff.diam2{2, k} = 9999999999999; mad(k) = sum(sum(diff.diam2{1,k})) / (w ^ 2); end end % calculating minimum of mad in 4 pat and the origin and inserting % them into a min_mad(i, j). where i, j decler the position of the % slice in the image % mad_org(i , j) = sum(sum(diff.org{i,j})) / (w ^ 2); % mad = [mad mad_org(i, j)]; [min_mad2(i, j) idx_min_mad2(i, j)] = min(mad); end end end for i = 1:r_time for j = 1:c_time if idx_min_mad2(i, j) ~= 0 motion_vector{i , j} = pat.diam2(:, idx_min_mad2(i, j)); end end end % other points that their minimum mads idx ~= 5. it means that these slices % are closer to farder slices. idx_min_mad3 = zeros(r_time, c_time); min_mad3 = zeros(r_time, c_time); for i = 1:r_time for j = 1:c_time clear mad if idx_min_mad(i, j) ~= 5 s_h_r = ((i-1) * w) + 1;%slice head row s_h_c = ((j-1) * w) + 1;%slice head column % diff.org{i, j} = abs(slice2{i, j} - slice1{i, j}); [r_hex c_hex] = size(pat.hexhor); for k = 1:c_hex if s_h_r + pat.hexhor(1, k) > 0 && s_h_c + pat.hexhor(2, k) > 0 && (idx_min_mad(i, j) == 1 || idx_min_mad(i, j) == 3) diff.hex{1, k} = abs(slice1{i, j}- im2(s_h_r + pat.hexhor(1, k):... i *w + pat.hexhor(1, k),... s_h_c + pat.hexhor(2, k):... j * w + pat.hexhor(2, k))); % calculating MAD = Mean Absolute Diffrence diff.hex{2, k} = sum(sum(diff.hex{1,k})) / (w ^ 2);% insert each MAD below each Pat mad(k) = sum(sum(diff.hex{1,k})) / (w ^ 2); elseif s_h_r + pat.hexver(1, k) > 0 && s_h_c + pat.hexver(2, k) > 0 && (idx_min_mad(i, j) == 2 || idx_min_mad(i, j) == 4) diff.hex{1, k} = abs(slice1{i, j}- im2(s_h_r + pat.hexver(1, k):... i *w + pat.hexver(1, k),... s_h_c + pat.hexver(2, k):... j * w + pat.hexver(2, k))); % calculating MAD = Mean Absolute Diffrence diff.hex{2, k} = sum(sum(diff.hex{1,k})) / (w ^ 2);% insert each MAD below each Pat mad(k) = sum(sum(diff.hex{1,k})) / (w ^ 2); else diff.hex{1, k} = 9999999999999; diff.hex{2, k} = 9999999999999; mad(k) = sum(sum(diff.hex{1,k})) / (w ^ 2); end end % calculating minimum of mad in 4 pat and inserting % them into a min_mad(i, j). where i, j decler the position of the % slice in the image % mad_org(i , j) = sum(sum(diff.org{i,j})) / (w ^ 2); % mad = [mad mad_org(i, j)]; [min_mad3(i, j) idx_min_mad3(i, j)] = min(mad); end end end % org_mov declare the movement vector for new pattern origins. org_mov = cell(r_time, c_time); for i = 1:r_time for j = 1:c_time if idx_min_mad3(i, j) ~= 0 && (idx_min_mad(i, j) == 1 || idx_min_mad(i, j) == 3) org_mov{i , j} = pat.hexhor(:, idx_min_mad3(i, j)); elseif idx_min_mad3(i, j) ~= 0 && (idx_min_mad(i, j) == 2 || idx_min_mad(i, j) == 4) org_mov{i , j} = pat.hexver(:, idx_min_mad3(i, j)); end end end % now we must go the theird step. the minimum mad point found in the % previous search step is repositioned as the center point to form a new % hexagon nad only three new non overlaped points will be checked as % candidates each time. so we must define new pattern. this time our % patterns must have a dynamic behavior. and also these pattern must be % created based on the old pat.hexver and pat.hexhor [r_mov c_mov] = size(org_mov); idx_min_mad4 = zeros(r_mov, c_mov); min_mad4 = zeros(r_mov, c_mov); for i = 1:r_mov for j = 1:c_mov clear mad nu = sparse(org_mov{i, j}); [r_nu c_nu] = size(nu); if r_nu ~= 0 || c_nu ~= 0 for z = 1:c_hex pat.hexver_new(:, z) = pat.hexver(:, z) + org_mov{i, j}; pat.hexhor_new(:, z) = pat.hexhor(:, z) + org_mov{i, j}; end s_h_r = ((i-1) * w) + 1;%slice head row s_h_c = ((j-1) * w) + 1;%slice head column % diff.org{i, j} = abs(slice2{i, j} - slice1{i, j}); [r_hex c_hex] = size(pat.hexhor_new); for k = 1:c_hex % clear mad if s_h_r + pat.hexhor_new(1, k) > 0 && s_h_c + pat.hexhor_new(2, k) > 0 && (idx_min_mad(i, j) == 1 || idx_min_mad(i, j) == 3) diff.hex{1, k} = abs(slice1{i, j}- im2(s_h_r + pat.hexhor_new(1, k):... i *w + pat.hexhor_new(1, k),... s_h_c + pat.hexhor_new(2, k):... j * w + pat.hexhor_new(2, k))); % calculating MAD = Mean Absolute Diffrence diff.hex{2, k} = sum(sum(diff.hex{1,k})) / (w ^ 2);% insert each MAD below each Pat mad(k) = sum(sum(diff.hex{1,k})) / (w ^ 2); elseif s_h_r + pat.hexver_new(1, k) > 0 && s_h_c + pat.hexver_new(2, k) > 0 && (idx_min_mad(i, j) == 2 || idx_min_mad(i, j) == 4) diff.hex{1, k} = abs(slice1{i, j}- im2(s_h_r + pat.hexver_new(1, k):... i *w + pat.hexver_new(1, k),... s_h_c + pat.hexver_new(2, k):... j * w + pat.hexver_new(2, k))); % calculating MAD = Mean Absolute Diffrence diff.hex{2, k} = sum(sum(diff.hex{1,k})) / (w ^ 2);% insert each MAD below each Pat mad(k) = sum(sum(diff.hex{1,k})) / (w ^ 2); else diff.hex{1, k} = 9999999999999; diff.hex{2, k} = 9999999999999; mad(k) = sum(sum(diff.hex{1,k})) / (w ^ 2); end end % calculating minimum of mad in 4 pat and inserting % them into a min_mad(i, j). where i, j declare the position of the % slice in the image % mad_org(i , j) = sum(sum(diff.org{i,j})) / (w ^ 2); mad = [mad mad_org(i, j)]; [min_mad4(i, j) idx_min_mad4(i, j)] = min(mad); % clear mad end end end % org_mov declare the movement vector for new pattern origins. % final motion vector calculation for i = 1:r_mov for j = 1:c_mov if idx_min_mad4(i, j) == 7 motion_vector{i, j} = pat.org; elseif idx_min_mad4(i, j) ~= 0 && (idx_min_mad(i, j) == 1 || idx_min_mad(i, j) == 3) motion_vector{i , j} = pat.hexhor_new(:, idx_min_mad4(i, j)); elseif idx_min_mad4(i, j) ~= 0 && (idx_min_mad(i, j) == 2 || idx_min_mad(i, j) == 4) motion_vector{i , j} = pat.hexver_new(:, idx_min_mad3(i, j)); end end end % now we want to find rep_motion vector motion_vectors = cat(2, motion_vector{:}); most_motion_vector = zeros(1, r_time .* c_time); clear temp temp = motion_vectors; for i=1:r_time .* c_time my_count = 0; element(:, 1) = temp(:, i); for k = i+1:r_time .* c_time if temp(:, k) == element(:, 1) my_count = my_count+1; % temp(:, k) = []; end end most_motion_vector(i) = my_count; end [value, idx] = max(most_motion_vector); rep_motion= motion_vectors(:, idx);
from http://www.mathworks.com/matlabcentral/fileexchange/15767-fast-motion-detection-bugs-fixed-
Snippet is not live.
Travelled to 12 computer(s): aoiabmzegqzx, bhatertpkbcr, cbybwowwnfue, gwrvuhgaqvyk, ishqpsrjomds, lpdgvwnxivlt, mqqgnosmbjvj, pyentgdyhuwx, pzhvpgtvlbxg, tslmcundralx, tvejysmllsmz, vouqrxazstgt
No comments. add comment
Snippet ID: | #2000475 |
Snippet name: | fastMV.m (fast motion detection in MATLAB) |
Eternal ID of this version: | #2000475/1 |
Text MD5: | 58b7089023914955e95075a921fb6063 |
Author: | stefan |
Category: | |
Type: | New Tinybrain snippet |
Public (visible to everyone): | Yes |
Archived (hidden from active list): | No |
Created/modified: | 2015-08-01 16:28:49 |
Source code size: | 13213 bytes / 298 lines |
Pitched / IR pitched: | No / Yes |
Views / Downloads: | 716 / 128 |
Referenced in: | #3000188 - Answer for stefanreich(>> t search) #3000382 - Answer for ferdie (>> t = 1, f = 0) #3000383 - Answer for funkoverflow (>> t=1, f=0 okay) |