Libraryless. Click here for Pure Java version (6584L/39K).
1 | // Approximate pixel-by-pixel similarity of 2 images very quickly |
2 | // (probabilistically) |
3 | |
4 | // Note: If my math is correct - and it always is -, floating-point |
5 | // rounding errors should not occur even for the largest images. |
6 | // Note 2: The data structures can get pretty big if you go to a |
7 | // very high detail level. |
8 | srecord noeq ImageSimilarityAtScale( |
9 | IIntegralImage img1, |
10 | IIntegralImage img2, |
11 | int featureSize // smallest block size to be looked at (w/h in pixels) |
12 | ) extends Probabilistic implements IF0<Double> { |
13 | |
14 | int channels; |
15 | LookAtClip root; |
16 | int blocksCalculated; |
17 | bool verbose; |
18 | bool updateInnerNodes; |
19 | |
20 | double factor; |
21 | double rootDiffs; |
22 | |
23 | // key = area in pixels |
24 | // Hmm. stil working this out. How to get the proper diff at |
25 | // different feature sizes? |
26 | //Map<Int, RatioAccumulator> diffAtScale = autoMap(() -> new RatioAccumulator); |
27 | |
28 | /*void updateDiffAtScale(int area, Double change) { |
29 | addToDoubleValueMap(diffAtScale, area, change, area); |
30 | }*/ |
31 | |
32 | record LookAtClip(LookAtClip parent, Rect r) implements Runnable { |
33 | L<LookAtClip> children; |
34 | |
35 | // diffs are in range [0;sqrt(channels)*pixelsCovered] |
36 | double initialDiff, diffsFromChildren, areaCoveredByChildren; |
37 | double latestDiff; |
38 | |
39 | double latestDiff() { ret latestDiff; } |
40 | |
41 | double calculateLatestDiff() { |
42 | double area = area(); |
43 | double areaLeft = 1-areaCoveredByChildren/area; |
44 | latestDiff = initialDiff*areaLeft+diffsFromChildren; |
45 | if (verbose) printVars(+r, +latestDiff, +initialDiff, +areaLeft, +diffsFromChildren); |
46 | ret latestDiff; |
47 | } |
48 | |
49 | run { |
50 | // make initial guess |
51 | |
52 | double sum = 0; |
53 | for channel to channels: { |
54 | double sum1 = img1.rectSum(r, channel); |
55 | double sum2 = img2.rectSum(r, channel); |
56 | sum += sqr(sum1-sum2); |
57 | //if (verbose) printVars(+r, +sum1, +sum2, +sum); |
58 | } |
59 | setInitialDiff(sqrt(sum)*factor); |
60 | ++blocksCalculated; |
61 | |
62 | if (r.w > r.h) { |
63 | if (r.w > featureSize) |
64 | splitHorizontally(); |
65 | } else { |
66 | if (r.h > featureSize) |
67 | splitVertically(); |
68 | } |
69 | } |
70 | |
71 | void splitHorizontally { |
72 | split(asList(splitRectInHorizontalHalves(r))); |
73 | } |
74 | |
75 | void splitVertically { |
76 | split(asList(splitRectInVerticalHalves(r))); |
77 | } |
78 | |
79 | void split(L<Rect> parts) { |
80 | double p = 0.99; |
81 | children = map(parts, r -> new LookAtClip(this, r)); |
82 | scheduleAllRelative(p, children); |
83 | } |
84 | |
85 | void setInitialDiff(double initialDiff) { |
86 | this.initialDiff = initialDiff; |
87 | //updateDiffAtScale(area(), initialDiff); |
88 | calculateLatestDiff(); |
89 | if (verbose) printVars setInitialDiff(+r, +initialDiff, +latestDiff); |
90 | if (this == root) rootDiffs = latestDiff; |
91 | if (parent != null) { |
92 | parent.areaCoveredByChildren += area(); |
93 | parent.diffsFromChildren += latestDiff; |
94 | parent.update(); |
95 | } |
96 | } |
97 | |
98 | void update() { |
99 | double oldValue = latestDiff; |
100 | calculateLatestDiff(); |
101 | if (verbose) printVars update(+r, +latestDiff); |
102 | rootDiffs += latestDiff-oldValue; |
103 | if (updateInnerNodes && parent != null) { |
104 | parent.diffsFromChildren += latestDiff-oldValue; |
105 | if (verbose) |
106 | printVars update2(+r, +oldValue, +latestDiff, |
107 | dfc := parent.diffsFromChildren); |
108 | parent.update(); |
109 | } |
110 | } |
111 | |
112 | simplyCached int area() { ret rectArea(r); } |
113 | } |
114 | |
115 | run { |
116 | assertEquals("Sizes of compared images have to be equal", img1.getSize(), img2.getSize()); |
117 | assertEquals("Channel counts of compared images have to be equal", channels = img1.nChannels(), img2.nChannels()); |
118 | factor = 1/(255.0*sqrt(channels)); |
119 | |
120 | root = new LookAtClip(null, imageRect(img1)); |
121 | root.run(); |
122 | } |
123 | |
124 | // similarity between 0 and 1 |
125 | // it's a best guess until the calculation is complete |
126 | public Double similarity aka get() { |
127 | ret 1-diff(); |
128 | } |
129 | |
130 | // difference (1-similarity) between 0 and 1 |
131 | // (this can be more precise in floating point then similarity) |
132 | public double diff() { |
133 | ret /*root.latestDiff()*/rootDiffs/root.area(); |
134 | } |
135 | |
136 | int blocksCalculated() { ret blocksCalculated; } |
137 | } |
download show line numbers debug dex old transpilations
Travelled to 3 computer(s): bhatertpkbcr, mqqgnosmbjvj, pyentgdyhuwx
No comments. add comment
Snippet ID: | #1032159 |
Snippet name: | ImageSimilarityAtScale [seems OK] - check how similar 2 images are on a given scale, probabilistically approximating from below |
Eternal ID of this version: | #1032159/57 |
Text MD5: | 59d05c7d0a30a27c6b6a09fb0bbdc93c |
Transpilation MD5: | 928b42a9d21b64a12667f8d773a46aab |
Author: | stefan |
Category: | javax |
Type: | JavaX fragment (include) |
Public (visible to everyone): | Yes |
Archived (hidden from active list): | No |
Created/modified: | 2021-09-08 03:10:16 |
Source code size: | 4315 bytes / 137 lines |
Pitched / IR pitched: | No / No |
Views / Downloads: | 359 / 625 |
Version history: | 56 change(s) |
Referenced in: | [show references] |