Not logged in.  Login/Logout/Register | List snippets | | Create snippet | Upload image | Upload data

64
LINES

< > BotCompany Repo | #1031966 // OneColorTheoryChecker [dev.]

JavaX fragment (include) [tags: use-pretranspiled]

Libraryless. Click here for Pure Java version (8317L/48K).

sclass OneColorTheoryChecker {
  replace Cell with URecognizer.Cell.
  replace Theory with BodyOfEvidence<S>.
  
  new ProbabilisticScheduler scheduler;
  
  record OneColorTheory(S text, Cell cell, RGB color) > Theory {
    toString {
      ret renderProbabilityGuess() + ": " + dollarVarsMeanFields(text, this);
    }
    
    selfType branch(O... _) { this; }
  }
  
  // create the theory object and initiate the reasoning
  // you have to step the scheduler afterwards to get results
  OneColorTheory makeTheory(Cell cell) {
    var color = cell.averageColor();

    var theory = new OneColorTheory("Color of every pixel in $cell is $color.", cell, color);
  
    testOneColorTheory(cell, theory);
    ret theory;
  }

  void noteCellColor(Cell cell, OneColorTheory theory) {
    var desc = "Pixel check at " + cell;
    if (theory.hasEvidenceFromSource(desc)) return;
    var strength = doubleRatio(cell.area(), theory.cell.area()); // how much do we have to say about the cell in the theory?
    var p = colorDistanceToProbability(cell.averageColor(), theory.color);
    addExampleToTheory(theory, desc, p, strength);
  }
  
  double colorDistanceToProbability(RGB col1, RGB col2) {
    double sim = colorSimilarity(col1, col2), sqr = sqr(sim);
    printFunctionCall colorDistanceToProbability(+col1, +col2, +sim, +sqr);
    ret sqr;
  }
  
  void testOneColorTheory(Cell cell, OneColorTheory theory) {  
    noteCellColor(cell, theory);
  
    scheduler.atRelative(dontZoomTooFar(cell), r {
      for (var split : usefulSplits(cell))
        scheduler.atRelative(split.probability(), r {
          for (var cell : split!)
            testOneColorTheory(cell, theory.branch(description := "recursion to " + cell));
        });
    });
  }
  
  L<WithProbability<Cell[]>> usefulSplits(Cell cell) {
    ret map withProbability1(llNonNulls(cell.split(0, 2), cell.split(1, 2)));
  }
  
  // probability penalty .25 for zooming in 3 steps
  double dontZoomTooFar(Cell cell) {
    ret 0.75;
  }
  
  void addExampleToTheory(Theory theory, S desc, double probabilityOfTheory, double strengthOfEvidence) {
    theory.addEvidence(desc, probabilityOfTheory, /* scheduler.currentProbability()* */ strengthOfEvidence);
  }
}

Author comment

Began life as a copy of #1031965

download  show line numbers  debug dex  old transpilations   

Travelled to 3 computer(s): bhatertpkbcr, mqqgnosmbjvj, pyentgdyhuwx

No comments. add comment

Snippet ID: #1031966
Snippet name: OneColorTheoryChecker [dev.]
Eternal ID of this version: #1031966/31
Text MD5: b44d29d36111a5d00d169fe230c47076
Transpilation MD5: 6d7864f2b1f103202b1d7b96f782d9f1
Author: stefan
Category: javax / image recognition
Type: JavaX fragment (include)
Public (visible to everyone): Yes
Archived (hidden from active list): No
Created/modified: 2021-08-11 12:13:01
Source code size: 2282 bytes / 64 lines
Pitched / IR pitched: No / No
Views / Downloads: 221 / 444
Version history: 30 change(s)
Referenced in: [show references]