Libraryless. Click here for Pure Java version (3303L/20K).
// based on: https://algs4.cs.princeton.edu/33balanced/RedBlackBST.java.html // TODO: implement NavigableSet sclass UltraCompactTreeSet<A> extends AbstractSet<A> { // A symbol table implemented using a left-leaning red-black BST. // This is the 2-3 version. private static final boolean RED = true; private static final boolean BLACK = false; private Node<A> root; // root of the BST int size; // size of tree set // BST helper node data type abstract sclass Node<A> { A val; // associated data Node<A> left, right; // links to left and right subtrees abstract bool color(); abstract BlackNode<A> convertToBlack(); abstract RedNode<A> convertToRed(); abstract Node<A> invertColor(); Node<A> convertToColor(bool color) { ret color == RED ? convertToRed() : convertToBlack(); } } sclass BlackNode<A> extends Node<A> { *(A *val) {} *(A *val, Node<A> *left, Node<A> *right) {} bool color() { ret BLACK; } BlackNode<A> convertToBlack() { this; } RedNode<A> convertToRed() { ret new RedNode(val, left, right); } Node invertColor() { ret convertToRed(); } } sclass RedNode<A> extends Node<A> { *(A *val) {} *(A *val, Node<A> *left, Node<A> *right) {} bool color() { ret RED; } BlackNode<A> convertToBlack() { ret new BlackNode(val, left, right); } RedNode<A> convertToRed() { this; } Node invertColor() { ret convertToBlack(); } } *() {} *(Cl<? extends A> cl) { addAll(cl); } // is node x red; false if x is null ? static bool <A> isRed(Node<A> x) { ret x instanceof RedNode; } public int size() { ret size; } public bool isEmpty() { ret root == null; } public bool add(A val) { int oldSize = size; root = put(root, val); root = root.convertToBlack(); ifdef CompactTreeSet_debug assertTrue(check()); endifdef ret size > oldSize; } // insert the value in the subtree rooted at h private Node<A> put(Node<A> h, A val) { if (h == null) { ++size; ret new RedNode(val); } int cmp = compare(val, h.val); if (cmp < 0) h.left = put(h.left, val); else if (cmp > 0) h.right = put(h.right, val); else { /*h.val = val;*/ } // no overwriting // fix-up any right-leaning links if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h); if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); if (isRed(h.left) && isRed(h.right)) h = flipColors(h); ret h; } // override me if you wish int compare(A a, A b) { ret cmp(a, b); } public bool remove(O key) { if (!contains(key)) false; // if both children of root are black, set root to red if (!isRed(root.left) && !isRed(root.right)) root = root.convertToRed(); root = delete(root, (A) key); if (!isEmpty()) root = root.convertToBlack(); // assert check(); true; } // delete the key-value pair with the given key rooted at h private Node delete(Node<A> h, A key) { // assert get(h, key) != null; if (compare(key, h.val) < 0) { if (!isRed(h.left) && !isRed(h.left.left)) h = moveRedLeft(h); h.left = delete(h.left, key); } else { if (isRed(h.left)) h = rotateRight(h); if (compare(key, h.val) == 0 && (h.right == null)) { --size; null; } if (!isRed(h.right) && !isRed(h.right.left)) h = moveRedRight(h); if (compare(key, h.val) == 0) { --size; Node<A> x = min(h.right); h.val = x.val; // h.val = get(h.right, min(h.right).val); // h.val = min(h.right).val; h.right = deleteMin(h.right); } else h.right = delete(h.right, key); } return balance(h); } // make a left-leaning link lean to the right private Node<A> rotateRight(Node<A> h) { // assert (h != null) && isRed(h.left); Node<A> x = h.left; h.left = x.right; x.right = h; x = x.convertToColor(x.right.color()); x.right = x.right.convertToRed(); ret x; } // make a right-leaning link lean to the left private Node<A> rotateLeft(Node<A> h) { // assert (h != null) && isRed(h.right); Node<A> x = h.right; h.right = x.left; x.left = h; x = x.convertToColor(x.left.color()); x.left = x.left.convertToRed(); ret x; } // flip the colors of a node and its two children private Node<A> flipColors(Node<A> h) { // h must have opposite color of its two children // assert (h != null) && (h.left != null) && (h.right != null); // assert (!isRed(h) && isRed(h.left) && isRed(h.right)) // || (isRed(h) && !isRed(h.left) && !isRed(h.right)); h.left = h.left.invertColor(); h.right = h.right.invertColor(); ret h.invertColor(); } // Assuming that h is red and both h.left and h.left.left // are black, make h.left or one of its children red. private Node<A> moveRedLeft(Node<A> h) { // assert (h != null); // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left); h = flipColors(h); if (isRed(h.right.left)) { h.right = rotateRight(h.right); h = rotateLeft(h); h = flipColors(h); } ret h; } // Assuming that h is red and both h.right and h.right.left // are black, make h.right or one of its children red. private Node<A> moveRedRight(Node<A> h) { // assert (h != null); // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left); h = flipColors(h); if (isRed(h.left.left)) { h = rotateRight(h); h = flipColors(h); } ret h; } // restore red-black tree invariant private Node<A> balance(Node<A> h) { // assert (h != null); if (isRed(h.right)) h = rotateLeft(h); if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); if (isRed(h.left) && isRed(h.right)) h = flipColors(h); ret h; } /** * Returns the height of the BST (for debugging). * @return the height of the BST (a 1-node tree has height 0) */ public int height() { ret height(root); } private int height(Node<A> x) { if (x == null) return -1; return 1 + Math.max(height(x.left), height(x.right)); } public bool contains(O val) { ret find(root, (A) val) != null; } public A find(A probeVal) { Node<A> n = find(root, probeVal); ret n == null ? null : n.val; } // value associated with the given key in subtree rooted at x; null if no such key private A get(Node<A> x, A key) { x = find(x, key); ret x == null ? null : x.val; } Node<A> find(Node<A> x, A key) { while (x != null) { int cmp = compare(key, x.val); if (cmp < 0) x = x.left; else if (cmp > 0) x = x.right; else ret x; } null; } private boolean check() { if (!is23()) println("Not a 2-3 tree"); if (!isBalanced()) println("Not balanced"); return is23() && isBalanced(); } // Does the tree have no red right links, and at most one (left) // red links in a row on any path? private boolean is23() { return is23(root); } private boolean is23(Node<A> x) { if (x == null) true; if (isRed(x.right)) false; if (x != root && isRed(x) && isRed(x.left)) false; ret is23(x.left) && is23(x.right); } // do all paths from root to leaf have same number of black edges? private bool isBalanced() { int black = 0; // number of black links on path from root to min Node<A> x = root; while (x != null) { if (!isRed(x)) black++; x = x.left; } ret isBalanced(root, black); } // does every path from the root to a leaf have the given number of black links? private boolean isBalanced(Node<A> x, int black) { if (x == null) return black == 0; if (!isRed(x)) black--; return isBalanced(x.left, black) && isBalanced(x.right, black); } public void clear() { root = null; size = 0; } // the smallest key in subtree rooted at x; null if no such key private Node<A> min(Node<A> x) { // assert x != null; while (x.left != null) x = x.left; ret x; } private Node<A> deleteMin(Node<A> h) { if (h.left == null) return null; if (!isRed(h.left) && !isRed(h.left.left)) h = moveRedLeft(h); h.left = deleteMin(h.left); ret balance(h); } public Iterator<A> iterator() { ret new MyIterator; } class MyIterator extends ItIt<A> { new L<Node<A>> path; *() { fetch(root); } void fetch(Node<A> node) { while (node != null) { path.add(node); node = node.left; } } public bool hasNext() { ret !path.isEmpty(); } public A next() { if (path.isEmpty()) fail("no more elements"); Node<A> node = popLast(path); // last node is always a leaf, so left is null // so proceed to fetch right branch fetch(node.right); ret node.val; } } // Returns the smallest key in the symbol table greater than or equal to {@code key}. public A ceiling(A key) { Node<A> x = ceiling(root, key); ret x == null ? null : x.val; } // the smallest key in the subtree rooted at x greater than or equal to the given key Node<A> ceiling(Node<A> x, A key) { if (x == null) null; int cmp = compare(key, x.val); if (cmp == 0) ret x; if (cmp > 0) ret ceiling(x.right, key); Node<A> t = ceiling(x.left, key); if (t != null) ret t; else ret x; } public A floor(A key) { Node<A> x = floor(root, key); ret x == null ? null : x.val; } // the largest key in the subtree rooted at x less than or equal to the given key Node<A> floor(Node<A> x, A key) { if (x == null) null; int cmp = compare(key, x.val); if (cmp == 0) ret x; if (cmp < 0) ret floor(x.left, key); Node<A> t = floor(x.right, key); if (t != null) ret t; else ret x; } }
Began life as a copy of #1029166
download show line numbers debug dex old transpilations
Travelled to 4 computer(s): bhatertpkbcr, mqqgnosmbjvj, pyentgdyhuwx, vouqrxazstgt
No comments. add comment
Snippet ID: | #1030938 |
Snippet name: | UltraCompactTreeSet [seems to work. 24 bytes per entry as opposed to 40 bytes in TreeSet] |
Eternal ID of this version: | #1030938/18 |
Text MD5: | dbc9c8fa213d0fb893927540b9f21272 |
Transpilation MD5: | 63d749b30723610d01e3ae5f6a7ed784 |
Author: | stefan |
Category: | javax |
Type: | JavaX fragment (include) |
Public (visible to everyone): | Yes |
Archived (hidden from active list): | No |
Created/modified: | 2021-04-13 15:32:08 |
Source code size: | 10509 bytes / 361 lines |
Pitched / IR pitched: | No / No |
Views / Downloads: | 205 / 456 |
Version history: | 17 change(s) |
Referenced in: | #1032621 - MegaCompactTreeSet [with more compact leaves than UltraCompactTreeSet, OK, 20 bytes per entry] #1034167 - Standard Classes + Interfaces (LIVE, continuation of #1003674) |