Libraryless. Click here for Pure Java version (3303L/20K).
1 | // based on: https://algs4.cs.princeton.edu/33balanced/RedBlackBST.java.html |
2 | // TODO: implement NavigableSet |
3 | sclass UltraCompactTreeSet<A> extends AbstractSet<A> { |
4 | |
5 | // A symbol table implemented using a left-leaning red-black BST. |
6 | // This is the 2-3 version. |
7 | |
8 | private static final boolean RED = true; |
9 | private static final boolean BLACK = false; |
10 | |
11 | private Node<A> root; // root of the BST |
12 | int size; // size of tree set |
13 | |
14 | // BST helper node data type |
15 | abstract sclass Node<A> { |
16 | A val; // associated data |
17 | Node<A> left, right; // links to left and right subtrees |
18 | |
19 | abstract bool color(); |
20 | abstract BlackNode<A> convertToBlack(); |
21 | abstract RedNode<A> convertToRed(); |
22 | abstract Node<A> invertColor(); |
23 | Node<A> convertToColor(bool color) { ret color == RED ? convertToRed() : convertToBlack(); } |
24 | } |
25 | |
26 | sclass BlackNode<A> extends Node<A> { |
27 | *(A *val) {} |
28 | *(A *val, Node<A> *left, Node<A> *right) {} |
29 | |
30 | bool color() { ret BLACK; } |
31 | BlackNode<A> convertToBlack() { this; } |
32 | RedNode<A> convertToRed() { ret new RedNode(val, left, right); } |
33 | Node invertColor() { ret convertToRed(); } |
34 | } |
35 | |
36 | sclass RedNode<A> extends Node<A> { |
37 | *(A *val) {} |
38 | *(A *val, Node<A> *left, Node<A> *right) {} |
39 | |
40 | bool color() { ret RED; } |
41 | BlackNode<A> convertToBlack() { ret new BlackNode(val, left, right); } |
42 | RedNode<A> convertToRed() { this; } |
43 | Node invertColor() { ret convertToBlack(); } |
44 | } |
45 | |
46 | *() {} |
47 | *(Cl<? extends A> cl) { addAll(cl); } |
48 | |
49 | // is node x red; false if x is null ? |
50 | static bool <A> isRed(Node<A> x) { |
51 | ret x instanceof RedNode; |
52 | } |
53 | |
54 | public int size() { |
55 | ret size; |
56 | } |
57 | |
58 | public bool isEmpty() { |
59 | ret root == null; |
60 | } |
61 | |
62 | public bool add(A val) { |
63 | int oldSize = size; |
64 | root = put(root, val); |
65 | root = root.convertToBlack(); |
66 | ifdef CompactTreeSet_debug assertTrue(check()); endifdef |
67 | ret size > oldSize; |
68 | } |
69 | |
70 | // insert the value in the subtree rooted at h |
71 | private Node<A> put(Node<A> h, A val) { |
72 | if (h == null) { ++size; ret new RedNode(val); } |
73 | |
74 | int cmp = compare(val, h.val); |
75 | if (cmp < 0) h.left = put(h.left, val); |
76 | else if (cmp > 0) h.right = put(h.right, val); |
77 | else { /*h.val = val;*/ } // no overwriting |
78 | |
79 | // fix-up any right-leaning links |
80 | if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h); |
81 | if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); |
82 | if (isRed(h.left) && isRed(h.right)) h = flipColors(h); |
83 | |
84 | ret h; |
85 | } |
86 | |
87 | // override me if you wish |
88 | int compare(A a, A b) { |
89 | ret cmp(a, b); |
90 | } |
91 | |
92 | public bool remove(O key) { |
93 | if (!contains(key)) false; |
94 | |
95 | // if both children of root are black, set root to red |
96 | if (!isRed(root.left) && !isRed(root.right)) |
97 | root = root.convertToRed(); |
98 | |
99 | root = delete(root, (A) key); |
100 | if (!isEmpty()) root = root.convertToBlack(); |
101 | // assert check(); |
102 | true; |
103 | } |
104 | |
105 | // delete the key-value pair with the given key rooted at h |
106 | private Node delete(Node<A> h, A key) { |
107 | // assert get(h, key) != null; |
108 | |
109 | if (compare(key, h.val) < 0) { |
110 | if (!isRed(h.left) && !isRed(h.left.left)) |
111 | h = moveRedLeft(h); |
112 | h.left = delete(h.left, key); |
113 | } |
114 | else { |
115 | if (isRed(h.left)) |
116 | h = rotateRight(h); |
117 | if (compare(key, h.val) == 0 && (h.right == null)) { |
118 | --size; null; |
119 | } if (!isRed(h.right) && !isRed(h.right.left)) |
120 | h = moveRedRight(h); |
121 | if (compare(key, h.val) == 0) { |
122 | --size; |
123 | Node<A> x = min(h.right); |
124 | h.val = x.val; |
125 | // h.val = get(h.right, min(h.right).val); |
126 | // h.val = min(h.right).val; |
127 | h.right = deleteMin(h.right); |
128 | } |
129 | else h.right = delete(h.right, key); |
130 | } |
131 | return balance(h); |
132 | } |
133 | |
134 | // make a left-leaning link lean to the right |
135 | private Node<A> rotateRight(Node<A> h) { |
136 | // assert (h != null) && isRed(h.left); |
137 | Node<A> x = h.left; |
138 | h.left = x.right; |
139 | x.right = h; |
140 | x = x.convertToColor(x.right.color()); |
141 | x.right = x.right.convertToRed(); |
142 | ret x; |
143 | } |
144 | |
145 | // make a right-leaning link lean to the left |
146 | private Node<A> rotateLeft(Node<A> h) { |
147 | // assert (h != null) && isRed(h.right); |
148 | Node<A> x = h.right; |
149 | h.right = x.left; |
150 | x.left = h; |
151 | x = x.convertToColor(x.left.color()); |
152 | x.left = x.left.convertToRed(); |
153 | ret x; |
154 | } |
155 | |
156 | // flip the colors of a node and its two children |
157 | private Node<A> flipColors(Node<A> h) { |
158 | // h must have opposite color of its two children |
159 | // assert (h != null) && (h.left != null) && (h.right != null); |
160 | // assert (!isRed(h) && isRed(h.left) && isRed(h.right)) |
161 | // || (isRed(h) && !isRed(h.left) && !isRed(h.right)); |
162 | h.left = h.left.invertColor(); |
163 | h.right = h.right.invertColor(); |
164 | ret h.invertColor(); |
165 | } |
166 | |
167 | // Assuming that h is red and both h.left and h.left.left |
168 | // are black, make h.left or one of its children red. |
169 | private Node<A> moveRedLeft(Node<A> h) { |
170 | // assert (h != null); |
171 | // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left); |
172 | |
173 | h = flipColors(h); |
174 | if (isRed(h.right.left)) { |
175 | h.right = rotateRight(h.right); |
176 | h = rotateLeft(h); |
177 | h = flipColors(h); |
178 | } |
179 | ret h; |
180 | } |
181 | |
182 | // Assuming that h is red and both h.right and h.right.left |
183 | // are black, make h.right or one of its children red. |
184 | private Node<A> moveRedRight(Node<A> h) { |
185 | // assert (h != null); |
186 | // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left); |
187 | h = flipColors(h); |
188 | if (isRed(h.left.left)) { |
189 | h = rotateRight(h); |
190 | h = flipColors(h); |
191 | } |
192 | ret h; |
193 | } |
194 | |
195 | // restore red-black tree invariant |
196 | private Node<A> balance(Node<A> h) { |
197 | // assert (h != null); |
198 | |
199 | if (isRed(h.right)) h = rotateLeft(h); |
200 | if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); |
201 | if (isRed(h.left) && isRed(h.right)) h = flipColors(h); |
202 | |
203 | ret h; |
204 | } |
205 | |
206 | |
207 | /** |
208 | * Returns the height of the BST (for debugging). |
209 | * @return the height of the BST (a 1-node tree has height 0) |
210 | */ |
211 | public int height() { |
212 | ret height(root); |
213 | } |
214 | |
215 | private int height(Node<A> x) { |
216 | if (x == null) return -1; |
217 | return 1 + Math.max(height(x.left), height(x.right)); |
218 | } |
219 | |
220 | public bool contains(O val) { |
221 | ret find(root, (A) val) != null; |
222 | } |
223 | |
224 | public A find(A probeVal) { |
225 | Node<A> n = find(root, probeVal); |
226 | ret n == null ? null : n.val; |
227 | } |
228 | |
229 | // value associated with the given key in subtree rooted at x; null if no such key |
230 | private A get(Node<A> x, A key) { |
231 | x = find(x, key); |
232 | ret x == null ? null : x.val; |
233 | } |
234 | |
235 | Node<A> find(Node<A> x, A key) { |
236 | while (x != null) { |
237 | int cmp = compare(key, x.val); |
238 | if (cmp < 0) x = x.left; |
239 | else if (cmp > 0) x = x.right; |
240 | else ret x; |
241 | } |
242 | null; |
243 | } |
244 | |
245 | private boolean check() { |
246 | if (!is23()) println("Not a 2-3 tree"); |
247 | if (!isBalanced()) println("Not balanced"); |
248 | return is23() && isBalanced(); |
249 | } |
250 | |
251 | // Does the tree have no red right links, and at most one (left) |
252 | // red links in a row on any path? |
253 | private boolean is23() { return is23(root); } |
254 | private boolean is23(Node<A> x) { |
255 | if (x == null) true; |
256 | if (isRed(x.right)) false; |
257 | if (x != root && isRed(x) && isRed(x.left)) false; |
258 | ret is23(x.left) && is23(x.right); |
259 | } |
260 | |
261 | // do all paths from root to leaf have same number of black edges? |
262 | private bool isBalanced() { |
263 | int black = 0; // number of black links on path from root to min |
264 | Node<A> x = root; |
265 | while (x != null) { |
266 | if (!isRed(x)) black++; |
267 | x = x.left; |
268 | } |
269 | ret isBalanced(root, black); |
270 | } |
271 | |
272 | // does every path from the root to a leaf have the given number of black links? |
273 | private boolean isBalanced(Node<A> x, int black) { |
274 | if (x == null) return black == 0; |
275 | if (!isRed(x)) black--; |
276 | return isBalanced(x.left, black) && isBalanced(x.right, black); |
277 | } |
278 | |
279 | public void clear() { root = null; size = 0; } |
280 | |
281 | // the smallest key in subtree rooted at x; null if no such key |
282 | private Node<A> min(Node<A> x) { |
283 | // assert x != null; |
284 | while (x.left != null) x = x.left; |
285 | ret x; |
286 | } |
287 | |
288 | private Node<A> deleteMin(Node<A> h) { |
289 | if (h.left == null) |
290 | return null; |
291 | |
292 | if (!isRed(h.left) && !isRed(h.left.left)) |
293 | h = moveRedLeft(h); |
294 | |
295 | h.left = deleteMin(h.left); |
296 | ret balance(h); |
297 | } |
298 | |
299 | public Iterator<A> iterator() { |
300 | ret new MyIterator; |
301 | } |
302 | |
303 | class MyIterator extends ItIt<A> { |
304 | new L<Node<A>> path; |
305 | |
306 | *() { |
307 | fetch(root); |
308 | } |
309 | |
310 | void fetch(Node<A> node) { |
311 | while (node != null) { |
312 | path.add(node); |
313 | node = node.left; |
314 | } |
315 | } |
316 | |
317 | public bool hasNext() { ret !path.isEmpty(); } |
318 | |
319 | public A next() { |
320 | if (path.isEmpty()) fail("no more elements"); |
321 | Node<A> node = popLast(path); |
322 | // last node is always a leaf, so left is null |
323 | // so proceed to fetch right branch |
324 | fetch(node.right); |
325 | ret node.val; |
326 | } |
327 | } |
328 | |
329 | // Returns the smallest key in the symbol table greater than or equal to {@code key}. |
330 | public A ceiling(A key) { |
331 | Node<A> x = ceiling(root, key); |
332 | ret x == null ? null : x.val; |
333 | } |
334 | |
335 | // the smallest key in the subtree rooted at x greater than or equal to the given key |
336 | Node<A> ceiling(Node<A> x, A key) { |
337 | if (x == null) null; |
338 | int cmp = compare(key, x.val); |
339 | if (cmp == 0) ret x; |
340 | if (cmp > 0) ret ceiling(x.right, key); |
341 | Node<A> t = ceiling(x.left, key); |
342 | if (t != null) ret t; |
343 | else ret x; |
344 | } |
345 | |
346 | public A floor(A key) { |
347 | Node<A> x = floor(root, key); |
348 | ret x == null ? null : x.val; |
349 | } |
350 | |
351 | // the largest key in the subtree rooted at x less than or equal to the given key |
352 | Node<A> floor(Node<A> x, A key) { |
353 | if (x == null) null; |
354 | int cmp = compare(key, x.val); |
355 | if (cmp == 0) ret x; |
356 | if (cmp < 0) ret floor(x.left, key); |
357 | Node<A> t = floor(x.right, key); |
358 | if (t != null) ret t; |
359 | else ret x; |
360 | } |
361 | } |
Began life as a copy of #1029166
download show line numbers debug dex old transpilations
Travelled to 4 computer(s): bhatertpkbcr, mqqgnosmbjvj, pyentgdyhuwx, vouqrxazstgt
No comments. add comment
Snippet ID: | #1030938 |
Snippet name: | UltraCompactTreeSet [seems to work. 24 bytes per entry as opposed to 40 bytes in TreeSet] |
Eternal ID of this version: | #1030938/18 |
Text MD5: | dbc9c8fa213d0fb893927540b9f21272 |
Transpilation MD5: | 63d749b30723610d01e3ae5f6a7ed784 |
Author: | stefan |
Category: | javax |
Type: | JavaX fragment (include) |
Public (visible to everyone): | Yes |
Archived (hidden from active list): | No |
Created/modified: | 2021-04-13 15:32:08 |
Source code size: | 10509 bytes / 361 lines |
Pitched / IR pitched: | No / No |
Views / Downloads: | 206 / 458 |
Version history: | 17 change(s) |
Referenced in: | [show references] |