Uses 108K of libraries. Click here for Pure Java version (10773L/76K).
// complexity is number of assumed heights * number of widths sclass MultiLevelRecognizer1 { // how big do we think the prototype is in the whole image // (percentage by height) transient L<Double> assumedPrototypeHeightPercentages = ll(70.0, 70.0/sqrt(2), 35.0, 35.0/sqrt(2), 17.0); // widths to scale camera image to transient L<Int> widths = ll(32, 64, 128); transient JTabbedPane tabs; // initialize if you want visualization transient ImageSurface bestImageSurface; transient JLabel bestLabel; transient BWIntegralImage baseImage; transient BWImage prototypeImage; transient new L<IBWIntegralImage> integralImages; transient new L<Chain> chains; // one per assumed height // chain of recognizers for one assumed height class Chain { double assumedHeightPercentage; new L<OneLevel> levels; // recognizers for each granularity *(double *assumedHeightPercentage) { make(); } void make { for (int w : widths) { IBWIntegralImage ii = scaledIBWIntegralImage(baseImage, w); integralImages.add(ii); OneLevel lvl = new(this, ii); levels.add(lvl); if (tabs != null && eq(w, last(widths))) { lvl.is = jPixelatedZoomedImageSurface( doubleRatio(baseImage.getWidth(), w), iBWIntegralImageToBWImage(ii)); addTab(tabs, iround(assumedHeightPercentage) + ":" + w, northAndCenterWithMargins( lvl.infoLabel = jcenteredlabel(), jFullCenterScroll(lvl.is))); } } } Steppable makeSteppable() { ret iteratorToSteppable(roundRobinCombinedIterator(lambdaMap steppableToIterator(levels))); } Scored<Rect> bestResult() { ret last(levels).scoredBestRescaled(); } } class OneLevel extends SteppableAndBest<Rect> { Chain chain; IBWIntegralImage ii; // scaled integral image BWImage image; // scaled image BWImage prototype; // scaled prototype float minSimilarity = 0.5f; ImageSurface is; JLabel infoLabel; // candidates are top-left corner of rect to try in our coordinates L<Pt> candidatesQueue = syncLinkedList(); new Set<Pt> candidatesTried; Iterator<Pt> candidatesStream; *(Chain *chain, IBWIntegralImage *ii) { image = iBWIntegralImageToBWImage(ii); // get assumed height of prototype in scaled-down image int ph = iround(ii.getHeight()*chain.assumedHeightPercentage/100.0); // resize prototype prototype = bwResizeToHeightSmooth(prototypeImage, ph); /*addTab(tabs, "proto " + ii.getWidth(), jFullCenterScroll(jPixelatedZoomedImageSurface(4.0, prototype))); */ candidatesStream = mapI rectTopLeftCorner(allSubRectsOfSizeIterator(prototype.getWidth(), prototype.getHeight(), imageRect(image))); } public bool step() { Pt p = nextCandidate(); if (p != null) ret true with tryCandidate(p); false; } Pt nextCandidate() { try object Pt p = popFirst(candidatesQueue); ret nextFromIterator(candidatesStream); } void tryCandidate(Pt p) { if (!candidatesTried.add(p)) ret; int x = p.x, y = p.y, wp = prototype.getWidth(), hp = prototype.getHeight(); float maxError = (1f-minSimilarity)*wp*hp; float diff = bwImageSectionsSimilarity(image, prototype, x, y, maxError); if (diff <= maxError) best.put(new Rect(x, y, wp, hp), 1-diff/(wp*hp)); } void showBest() { setImageSurfaceSelection(is, best!); setText(infoLabel, best); } // best rect in original image coordinates Rect bestRescaled() { ret rescaleRect(best!, ii.getWidth(), ii.getHeight(), baseImage.getWidth(), baseImage.getHeight()); } Scored<Rect> scoredBestRescaled() { ret scored(bestRescaled(), best.score); } } *() {} *(File prototypeImage, File imgFile) { this.prototypeImage = loadBWImage(prototypeImage); this.baseImage = loadBWIntegralImage(imgFile); } Scored<Rect> go() { assertNotNull(+baseImage); assertNotNull(+prototypeImage); if (tabs != null) addTab(tabs, "Best", northAndCenterWithMargins( bestLabel = jcenteredlabel(), jFullCenterScroll(bestImageSurface = jImageSurface(bwIntegralImageToBWImage(baseImage))))); makeChains(); time "Process" { print("Steps: " + stepAll_roundRobin(map(chains, c -> c.makeSteppable()))); } showBest(); ret bestResult(); } void showBest { for (Chain c : chains) for (OneLevel l : c.levels) l.showBest(); setText(bestLabel, bestResult()); setImageSurfaceSelection(bestImageSurface, bestResult()!); } void makeChains { for (double ah : assumedPrototypeHeightPercentages) chains.add(new Chain(ah)); } Scored<Rect> bestResult() { ret bestScored(map(methodLambda0 bestResult, chains)); } }
download show line numbers debug dex old transpilations
Travelled to 7 computer(s): bhatertpkbcr, mqqgnosmbjvj, pyentgdyhuwx, pzhvpgtvlbxg, tvejysmllsmz, vouqrxazstgt, xrpafgyirdlv
No comments. add comment
Snippet ID: | #1027225 |
Snippet name: | MultiLevelRecognizer1 - finds a single prototype image |
Eternal ID of this version: | #1027225/32 |
Text MD5: | 2d327724a16b29fd1513a986e012be05 |
Transpilation MD5: | 3b267b00ce652cb4b0c5826b3fd604cc |
Author: | stefan |
Category: | javax / image recognition |
Type: | JavaX fragment (include) |
Public (visible to everyone): | Yes |
Archived (hidden from active list): | No |
Created/modified: | 2020-02-26 15:16:33 |
Source code size: | 5053 bytes / 155 lines |
Pitched / IR pitched: | No / No |
Views / Downloads: | 259 / 700 |
Version history: | 31 change(s) |
Referenced in: | [show references] |