// see: https://en.wikipedia.org/wiki/Order_statistic_tree
sclass LogNArray extends RandomAccessAbstractList {
private transient Entry root;
/**
* The number of entries in the tree
*/
//private transient int size = 0;
/**
* The number of structural modifications to the tree.
*/
private transient int modCount = 0;
// Query Operations
public int size() {
ret root == null ? 0 : root.size;
}
public bool contains(Object value) {
for (Entry e = getFirstEntry(); e != null; e = successor(e))
if (eq(value, e.value))
true;
false;
}
public A get(int idx) {
Entry p = getEntry(idx);
return p == null ? null : p.value;
}
int subTreeSize(Entry e) { ret e == null ? 0 : e.size; }
final Entry getEntry(int idx) {
if (idx < 0 || idx >= size())
throw new IndexOutOfBoundsException(idx + " / " + size());
Entry p = root;
while true {
int sizeLeft = subTreeSize(p.left);
if (idx < sizeLeft)
continue with p = p.left;
idx -= sizeLeft;
if (idx == 0) ret p;
idx--;
p = p.right;
}
}
/*public A put(Int key, A value) {
Entry t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
//size = 1;
modCount++;
return null;
}
int cmp;
Entry parent;
// split comparator and comparable paths
Comparator super Int> cpr = comparator;
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable super Int> k = (Comparable super Int>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
Entry e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);
//size++;
modCount++;
return null;
}*/
/*public A remove(int idx) {
Entry p = getEntry(key);
if (p == null)
return null;
A oldValue = p.value;
deleteEntry(p);
return oldValue;
}*/
public void clear() {
modCount++;
//size = 0;
root = null;
}
// Red-black mechanics
private static final boolean RED = false;
private static final boolean BLACK = true;
/**
* Node in the Tree. Doubles as a means to pass key-value pairs back to
* user (see Map.Entry).
*/
static final class Entry {
int size = 1; // entry count of subtree
//Int key;
A value;
Entry left;
Entry right;
Entry parent;
boolean color = BLACK;
/**
* Make a new cell with given value and parent, and with
* {@code null} child links, size 1, and BLACK color.
*/
Entry(A value, Entry parent) {
this.value = value;
this.parent = parent;
}
}
final Entry getFirstEntry() {
Entry p = root;
if (p != null)
while (p.left != null)
p = p.left;
return p;
}
final Entry getLastEntry() {
Entry p = root;
if (p != null)
while (p.right != null)
p = p.right;
return p;
}
static LogNArray.Entry successor(Entry t) {
if (t == null)
return null;
else if (t.right != null) {
Entry p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {
Entry p = t.parent;
Entry ch = t;
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
}
static Entry predecessor(Entry t) {
if (t == null)
return null;
else if (t.left != null) {
Entry p = t.left;
while (p.right != null)
p = p.right;
return p;
} else {
Entry p = t.parent;
Entry ch = t;
while (p != null && ch == p.left) {
ch = p;
p = p.parent;
}
return p;
}
}
/**
* Balancing operations.
*
* Implementations of rebalancings during insertion and deletion are
* slightly different than the CLR version. Rather than using dummy
* nilnodes, we use a set of accessors that deal properly with null. They
* are used to avoid messiness surrounding nullness checks in the main
* algorithms.
*/
private static boolean colorOf(Entry p) {
return (p == null ? BLACK : p.color);
}
private static Entry parentOf(Entry p) {
return (p == null ? null: p.parent);
}
private static void setColor(Entry p, boolean c) {
if (p != null)
p.color = c;
}
private static Entry leftOf(Entry p) {
return (p == null) ? null: p.left;
}
private static Entry rightOf(Entry p) {
return (p == null) ? null: p.right;
}
/** From CLR */
private void rotateLeft(Entry p) {
if (p != null) {
Entry r = p.right;
p.right = r.left;
if (r.left != null)
r.left.parent = p;
r.parent = p.parent;
if (p.parent == null)
root = r;
else if (p.parent.left == p)
p.parent.left = r;
else
p.parent.right = r;
r.left = p;
p.parent = r;
}
}
/** From CLR */
private void rotateRight(Entry p) {
if (p != null) {
Entry l = p.left;
p.left = l.right;
if (l.right != null) l.right.parent = p;
l.parent = p.parent;
if (p.parent == null)
root = l;
else if (p.parent.right == p)
p.parent.right = l;
else p.parent.left = l;
l.right = p;
p.parent = l;
}
}
/** From CLR */
private void fixAfterInsertion(Entry x) {
x.color = RED;
while (x != null && x != root && x.parent.color == RED) {
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
Entry y = rightOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == rightOf(parentOf(x))) {
x = parentOf(x);
rotateLeft(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
} else {
Entry y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == leftOf(parentOf(x))) {
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
root.color = BLACK;
}
/**
* Delete node p, and then rebalance the tree.
*/
private void deleteEntry(Entry p) {
modCount++;
//size--;
// If strictly internal, copy successor's element to p and then make p
// point to successor.
if (p.left != null && p.right != null) {
Entry s = successor(p);
p.value = s.value;
p = s;
} // p has 2 children
// Start fixup at replacement node, if it exists.
Entry replacement = (p.left != null ? p.left : p.right);
if (replacement != null) {
// Link replacement to parent
replacement.parent = p.parent;
if (p.parent == null)
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement;
// Null out links so they are OK to use by fixAfterDeletion.
p.left = p.right = p.parent = null;
// Fix replacement
if (p.color == BLACK)
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
root = null;
} else { // No children. Use self as phantom replacement and unlink.
if (p.color == BLACK)
fixAfterDeletion(p);
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}
/** From CLR */
private void fixAfterDeletion(Entry x) {
while (x != root && colorOf(x) == BLACK) {
if (x == leftOf(parentOf(x))) {
Entry sib = rightOf(parentOf(x));
if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateLeft(parentOf(x));
sib = rightOf(parentOf(x));
}
if (colorOf(leftOf(sib)) == BLACK &&
colorOf(rightOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(rightOf(sib)) == BLACK) {
setColor(leftOf(sib), BLACK);
setColor(sib, RED);
rotateRight(sib);
sib = rightOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(rightOf(sib), BLACK);
rotateLeft(parentOf(x));
x = root;
}
} else { // symmetric
Entry sib = leftOf(parentOf(x));
if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateRight(parentOf(x));
sib = leftOf(parentOf(x));
}
if (colorOf(rightOf(sib)) == BLACK &&
colorOf(leftOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(leftOf(sib)) == BLACK) {
setColor(rightOf(sib), BLACK);
setColor(sib, RED);
rotateLeft(sib);
sib = leftOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(leftOf(sib), BLACK);
rotateRight(parentOf(x));
x = root;
}
}
}
setColor(x, BLACK);
}
/**
* Finds the level down to which to assign all nodes BLACK. This is the
* last `full' level of the complete binary tree produced by buildTree.
* The remaining nodes are colored RED. (This makes a `nice' set of
* color assignments wrt future insertions.) This level number is
* computed by finding the number of splits needed to reach the zeroeth
* node.
*
* @param size the (non-negative) number of keys in the tree to be built
*/
private static int computeRedLevel(int size) {
return 31 - Integer.numberOfLeadingZeros(size + 1);
}
}