get("#265") -- json.encode
images = {"#1000061", "A", "#1000056", "H", "#1000064", "P", "#1000063", "X", "#1000062", "B"}
features = {"#326", "#327", "#328"}
-- make a letter lookup map
image2letter = {}
for i=1, #images, 2 do image2letter[images[i]] = images[i+1] end
-- find out which results to load
toget = {}
for i=1, #images, 2 do table.insert(toget, images[i]) end
for i=1, #features do table.insert(toget, features[i]) end
results = getirresults(unpack(toget))
--map: feature -> letter -> value range
map = {}
for image, subresults in pairs(results) do
letter = image2letter[image]
for feature, result in pairs(subresults) do
_, _, value = string.find(result, ": ([0-9.]+)")
if value ~= nil then
value = tonumber(value)
if map[feature] == nil then map[feature] = {} end
submap = map[feature]
range = submap[letter]
if range == nil then
range = {value, value}
else
range = {math.min(range[1], value), math.max(range[2], value)}
end
submap[letter] = range
end
end
end
-- get serpent to serialize map into Lua code
serpent = go("#158")
--if all features are within the known value ranges for the letter, just take the intersection of all the matching letters within each feature.
-- serpent options:
-- block(map, {comment=false}) is that indented stuff
-- line(map, {comment=false}) is all in one line
-- dump(map) is...?
-- line(map, {comment=false, compact=true, sparse=true}) is in one line, very compact
-- line(map, {comment=false, compact=true, sparse=false}) is the same
recognizer = " map = "..serpent.line(map, {comment=false, compact=true, sparse=false}).."\n"..[[
allletters = {}
outmap = {}
for feature, submap in pairs(map) do
f = otherresults[feature]
if f == nil then error("Need recalc, waiting for "..feature) end
_, _, value = string.find(f, ": ([0-9.]+)")
if value ~= nil then
value = tonumber(value)
for letter, range in pairs(submap) do
allletters[letter] = true
if value < range[1] or value > range[2] then
outmap[letter] = true -- can't be this letter
end
end
end
end
candidates = {}
for letter, _ in pairs(allletters) do
if not outmap[letter] then
table.insert(candidates, letter)
end
end
if #candidates ~= 0 then
return "Candidates: "..table.concat(candidates, ", ")
end
]]
print(recognizer)
snippet = {
type = 26, -- Lua code - Image recognition
text = recognizer,
title = "A machine-made letter recognizer, v3"
}
return json.encode(snippet)
--todo: otherwise, expand all value ranges uniformly and try again.
--more todo: repeat & increase ranges exponentially, finally at least one letter will match.I'm redefining the term PERCEPTRON... ^^ It means a production facility for a general "decider" based on a list of examples and feature extractors.
test run test run with input produce a snippet download show line numbers
Travelled to 12 computer(s): aoiabmzegqzx, bhatertpkbcr, cbybwowwnfue, gwrvuhgaqvyk, ishqpsrjomds, lpdgvwnxivlt, mqqgnosmbjvj, pyentgdyhuwx, pzhvpgtvlbxg, tslmcundralx, tvejysmllsmz, vouqrxazstgt
No comments. add comment
| Recognizer | Recognition Result | Visualize | Recalc |
|---|---|---|---|
| #308 | javax.imageio.IIOException: Can't get input stream from URL! | [visualize] |
| Snippet ID: | #329 |
| Snippet name: | Simple perceptron [not really a perceptron] |
| Eternal ID of this version: | #329/2 |
| Text MD5: | bd993491c90d73e238bdb59189c62608 |
| Author: | stefan |
| Category: | meta letter recognizers |
| Type: | Lua code - Snippet producer |
| Public (visible to everyone): | Yes |
| Archived (hidden from active list): | No |
| Created/modified: | 2017-09-05 17:12:14 |
| Source code size: | 2846 bytes / 93 lines |
| Pitched / IR pitched: | No / No |
| Views / Downloads: | 1778 / 308 |
| Version history: | 1 change(s) |
| Referenced in: | [show references] |