Uses 911K of libraries. Click here for Pure Java version (18263L/98K).
| 1 | !7 | 
| 2 | |
| 3 | cmodule TheoryMaker > DynConvo {
 | 
| 4 | /* | 
| 5 | 1. measurable features (fields of object) | 
| 6 | 2. labels (words the user throws in) | 
| 7 | 3. make theories (random connectors between features and labels) | 
| 8 | 4. check theories | 
| 9 | |
| 10 | 1. show a random line | 
| 11 | 2. user types keyword | 
| 12 | 3. assign keyword to line | 
| 13 | 4. check if prediction weas correct | 
| 14 | |
| 15 | Basic theory making | 
| 16 | ------------------- | 
| 17 | |
| 18 | For any label X: | 
| 19 | test theory (for every M: M has label X) | 
| 20 | test theory (for every M: M doesn't have label X) | 
| 21 | |
| 22 | For any feature F: | 
| 23 | for every seen value V of F: | 
| 24 | for every label X: | 
| 25 | test theory (for every M: msg M's feature F has value V => msg has label x)) | 
| 26 | test theory (for every M: msg M's feature F has value V => msg doesn't have label x)) | 
| 27 | |
| 28 | */ | 
| 29 | |
| 30 |   srecord Theory(BasicLogicRule statement) {
 | 
| 31 | new PosNeg<Msg> examples; | 
| 32 | //bool iff; // <=> instead of only => | 
| 33 |     toString { ret str(statement.lhs instanceof MPTrue ? "Every message is " + statement.rhs
 | 
| 34 | : bidiMode ? statement.lhs + " <=> " + statement.rhs : statement); } | 
| 35 | } | 
| 36 | |
| 37 | // propositions about a message. check returns null if unknown | 
| 38 |   asclass MsgProp { abstract Bool check(Msg msg); }
 | 
| 39 | |
| 40 |   srecord MPTrue() > MsgProp {
 | 
| 41 |     Bool check(Msg msg) { true; }
 | 
| 42 |     toString { ret "always"; }
 | 
| 43 | } | 
| 44 | |
| 45 |   record HasLabel(S label) > MsgProp {
 | 
| 46 |     Bool check(Msg msg) { ret msg2label_new.get(msg, label); }
 | 
| 47 |     toString { ret label; }
 | 
| 48 | } | 
| 49 | |
| 50 |   record DoesntHaveLabel(S label) > MsgProp {
 | 
| 51 |     Bool check(Msg msg) { ret not(msg2label_new.get(msg, label)); }
 | 
| 52 |     toString { ret "not " + label; }
 | 
| 53 | } | 
| 54 | |
| 55 |   record FeatureValueIs(S feature, O value) > MsgProp {
 | 
| 56 |     Bool check(Msg msg) { ret eq(getMsgFeature(msg, feature), value); }
 | 
| 57 |     toString { ret feature + "=" + value; }
 | 
| 58 | } | 
| 59 | |
| 60 |   class Label {
 | 
| 61 | S name; | 
| 62 | |
| 63 |     *() {}
 | 
| 64 |     *(S *name) {}
 | 
| 65 | |
| 66 | TreeSetWithDuplicates<Theory> bestTheories = new(reverseComparatorFromCalculatedField theoryScore()); | 
| 67 | |
| 68 |     int score() { ret theoryScore(first(bestTheories)); }
 | 
| 69 |     Theory bestTheory() { ret first(bestTheories); }
 | 
| 70 | } | 
| 71 | |
| 72 | switchable double minAdjustedScoreToDisplay = 50; | 
| 73 | switchable bool autoNext = false; | 
| 74 | static bool bidiMode = true; // treat all theories as bidirectional | 
| 75 | |
| 76 | L<Msg> msgs; // full dialog | 
| 77 | L<Msg> shownMsgs; | 
| 78 | transient Map<Msg, Map<S, O>> msg2features = AutoMap<>(lambda1 calcMsgFeatures); | 
| 79 | new LinkedHashSet<Theory> theories; | 
| 80 | S analysisText; | 
| 81 | transient JTable theoryTable, labelsTable, trainedExamplesTable; | 
| 82 | transient JTabbedPane tabs; | 
| 83 | transient SingleComponentPanel scpPredictions; | 
| 84 | transient new Map<S, Label> labelsByName; | 
| 85 | |
| 86 | new Set<S> allLabels; | 
| 87 | transient new L<IVF1<S>> onNewLabel; | 
| 88 | new DoubleKeyedMap<Msg, S, Bool> msg2label_new; | 
| 89 | transient new Map<S, FeatureExtractor<Msg>> featureExtractors; | 
| 90 | transient Q thinkQ; | 
| 91 | |
| 92 |   sinterface FeatureEnv<A> {
 | 
| 93 | A mainObject(); | 
| 94 | O getFeature(S name); | 
| 95 | } | 
| 96 | |
| 97 |   sinterface FeatureExtractor<A> {
 | 
| 98 | O get(FeatureEnv<A> env); | 
| 99 | } | 
| 100 | |
| 101 |   start {
 | 
| 102 |     thinkQ = dm_startQ("Thought Queue");
 | 
| 103 |     thinkQ.add(r {
 | 
| 104 | // legacy + after deletion cleaning | 
| 105 | setField(allLabels := asTreeSet(msg2label_new.bKeys())); | 
| 106 | updateLabelsByName(); | 
| 107 | |
| 108 | onNewLabel.add(lbl -> change()); | 
| 109 | |
| 110 | makeTheoriesAboutLabels(); | 
| 111 | makeTheoriesAboutFeaturesAndLabels(); | 
| 112 | |
| 113 | for (S field : fields(Msg)) | 
| 114 | featureExtractors.put(field, env -> getOpt(env.mainObject(), field)); | 
| 115 | |
| 116 |       makeTextExtractors("text");
 | 
| 117 | |
| 118 | callFAllOnAll(onNewLabel, allLabels); | 
| 119 | |
| 120 | msg2labelUpdated(); | 
| 121 | if (empty(msgs)) | 
| 122 | setField(msgs := mainCruddieLog()); | 
| 123 | showRandomMsg(); | 
| 124 | }); | 
| 125 | } | 
| 126 | |
| 127 |   void makeTheoriesAboutLabels {
 | 
| 128 | // For any label X: | 
| 129 |     onNewLabel.add(lbl -> {
 | 
| 130 | // test theory (for every M: M has label X) | 
| 131 | addTheory(new Theory(BasicLogicRule(new MPTrue, new HasLabel(lbl)))); | 
| 132 | // test theory (for every M: M doesn't have label X) | 
| 133 | addTheory(new Theory(BasicLogicRule(new MPTrue, new DoesntHaveLabel(lbl)))); | 
| 134 | }); | 
| 135 | } | 
| 136 | |
| 137 |   void makeTheoriesAboutFeaturesAndLabels {
 | 
| 138 | // for every label X: | 
| 139 |     onNewLabel.add(lbl -> {
 | 
| 140 | // For any feature F: | 
| 141 | for (S feature : keys(featureExtractors)) | 
| 142 | // for every seen value V of F: | 
| 143 | for (O value : possibleValuesOfFeatureRelatedToLabel(feature, lbl)) | 
| 144 | for (O rhs : ll(new HasLabel(lbl), new DoesntHaveLabel(lbl))) | 
| 145 | // test theory (for every M: msg M's feature F has value V => msg has/doesn't have label x)) | 
| 146 | addTheory(new Theory(BasicLogicRule( | 
| 147 | new FeatureValueIs(feature, value), rhs))); | 
| 148 | }); | 
| 149 | } | 
| 150 | |
| 151 |   Set possibleValuesOfFeature(S feature) {
 | 
| 152 | if (isBoolField(Msg, feature)) | 
| 153 | ret litset(false, true); | 
| 154 | ret litset(); | 
| 155 | } | 
| 156 | |
| 157 |   Set possibleValuesOfFeatureRelatedToLabel(S feature, S label) {
 | 
| 158 | Set set = possibleValuesOfFeature(feature); | 
| 159 | fOr (Msg msg : getMsgsRelatedToLabel(label)) | 
| 160 | set.add(getMsgFeature(msg, feature)); | 
| 161 | ret set; | 
| 162 | } | 
| 163 | |
| 164 | // returns AutoMap with no realized entries | 
| 165 |   Map<S, O> calcMsgFeatures(Msg msg) {
 | 
| 166 | new Var<FeatureEnv<Msg>> env; | 
| 167 | AutoMap<S, O> map = new(feature -> featureExtractors.get(feature).get(env!)); | 
| 168 |     env.set(new FeatureEnv<Msg> {
 | 
| 169 |       Msg mainObject() { ret msg; }
 | 
| 170 |       O getFeature(S feature) { ret map.get(feature); }
 | 
| 171 | }); | 
| 172 | ret map; | 
| 173 | } | 
| 174 | |
| 175 |   void showMsgs(L<Msg> l) {
 | 
| 176 | setField(shownMsgs := l); | 
| 177 | setMsgs(l); | 
| 178 |     if (l(shownMsgs) == 1) {
 | 
| 179 | Msg msg = first(shownMsgs); | 
| 180 | setField(analysisText := joinWithEmptyLines( | 
| 181 | "Trained Labels: " + or2(renderBoolMap(getMsgLabels(msg)), "-"), | 
| 182 | "Features:\n" + formatColonProperties_quoteStringValues( | 
| 183 | msg2features.get(msg)) | 
| 184 | )); | 
| 185 | setSCPComponent(scpPredictions, | 
| 186 | scrollableStackWithSpacing(map(predictionsForMsg(msg), p -> | 
| 187 | withSideMargin(jLabelWithButtons(iround(p.adjustedConfidence) + "%: " + p.predictedLabel(), | 
| 188 |             "Right", rThread { acceptPrediction(p) },
 | 
| 189 |             "Wrong", rThread { rejectPrediction(p) })))));
 | 
| 190 | } else setField(analysisText := ""); | 
| 191 | } | 
| 192 | |
| 193 |   void updatePredictions() {
 | 
| 194 | showMsgs(shownMsgs); | 
| 195 | } | 
| 196 | |
| 197 |   srecord Prediction(S label, bool plus, double adjustedConfidence) {
 | 
| 198 |     toString {
 | 
| 199 | ret predictedLabel() + " (confidence: " + iround(adjustedConfidence) + "%)"; | 
| 200 | } | 
| 201 | |
| 202 |     S predictedLabel() {
 | 
| 203 | ret (plus ? "" : "not ") + label; | 
| 204 | } | 
| 205 | } | 
| 206 | |
| 207 |   L<Prediction> predictionsForMsg(Msg msg) {
 | 
| 208 | // positive labels first, then "not"s. sort by score in each group | 
| 209 | new L<Prediction> out; | 
| 210 |     for (Label label : values(labelsByName)) {
 | 
| 211 | Theory t = label.bestTheory(), continue if null; | 
| 212 | Bool lhs = evalTheoryLHS(t, msg), continue if null; | 
| 213 | bool prediction = t.statement.rhs instanceof DoesntHaveLabel ? !lhs : lhs; | 
| 214 | double conf = threeB1BScore(t.examples), adjusted = adjustConfidence(conf); | 
| 215 | if (adjusted < minAdjustedScoreToDisplay) continue; | 
| 216 | out.add(new Prediction(label.name, prediction, adjusted)); | 
| 217 | } | 
| 218 | ret sortedByCalculatedFieldDesc(out, p -> pair(p.plus, p.adjustedConfidence)); | 
| 219 | } | 
| 220 | |
| 221 | // go from range 50-100 to 0-100 (might look better) | 
| 222 |   double adjustConfidence(double x) {
 | 
| 223 | ret max(0, (x-50)*2); | 
| 224 | } | 
| 225 | |
| 226 |   void showRandomMsg {
 | 
| 227 | showMsgs(randomElementAsList(msgs)); | 
| 228 | } | 
| 229 | |
| 230 |   void acceptPrediction(Prediction p) {
 | 
| 231 | if (p != null) sendInput2(p.predictedLabel()); | 
| 232 | } | 
| 233 | |
| 234 |   void rejectPrediction(Prediction p) {
 | 
| 235 | if (p != null) sendInput2(cloneWithFlippedBoolField plus(p).predictedLabel()); | 
| 236 | } | 
| 237 | |
| 238 | @Override | 
| 239 |   void sendInput2(S s) {
 | 
| 240 | // treat input as a label | 
| 241 |     if (l(shownMsgs) == 1) {
 | 
| 242 | Msg shown = first(shownMsgs); | 
| 243 | new Matches m; | 
| 244 |       if "not ..." {
 | 
| 245 | S label = cleanLabel(m.rest()); | 
| 246 | doubleKeyedMapPutVerbose(+msg2label_new, shown, label, false); | 
| 247 | msg2labelUpdated(label); | 
| 248 | if (autoNext) showRandomMsg(); | 
| 249 |       } else {
 | 
| 250 | S label = cleanLabel(s); | 
| 251 | doubleKeyedMapPutVerbose(+msg2label_new, shown, label, true); | 
| 252 | msg2labelUpdated(label); | 
| 253 | if (autoNext) showRandomMsg(); | 
| 254 | } | 
| 255 | change(); | 
| 256 | } | 
| 257 | } | 
| 258 | |
| 259 |   Map<S, Bool> getMsgLabels(Msg msg) {
 | 
| 260 | ret msg2label_new.getA(msg); | 
| 261 | } | 
| 262 |   Set<Msg> getMsgsRelatedToLabel(S label) { ret msg2label_new.asForB(label); }
 | 
| 263 | |
| 264 |   void msg2labelUpdated(S label) {
 | 
| 265 | for (Theory t : cloneList(labelByName(label).bestTheories)) | 
| 266 | checkTheory(t); | 
| 267 | msg2labelUpdated(); | 
| 268 | } | 
| 269 | |
| 270 |   void msg2labelUpdated() {
 | 
| 271 | callFAllOnAll(onNewLabel, addAll_returnNew(allLabels, msg2label_new.bKeys())); | 
| 272 | updateTrainedExamplesTable(); | 
| 273 | } | 
| 274 | |
| 275 |   void updateTrainedExamplesTable {
 | 
| 276 | dataToTable_uneditable(trainedExamplesTable, map(msg2label_new.map1, (msg, map) -> | 
| 277 | litorderedmap( | 
| 278 | "Message" := (msg.fromUser ? "User" : "Bot") + ": " + msg.text, | 
| 279 | "Labels" := renderBoolMap(map)))); | 
| 280 | } | 
| 281 | |
| 282 |   JComponent mainPart() {
 | 
| 283 | ret jhsplit(jvsplit( | 
| 284 |         jCenteredSection("Focused Message", super.mainPart()),
 | 
| 285 | jhsplit( | 
| 286 |           jCenteredSection("Message Analysis", dm_textArea analysisText()),
 | 
| 287 |           jCenteredSection("Predictions", scpPredictions = singleComponentPanel())
 | 
| 288 | )), | 
| 289 | with(r updateTabs, tabs = jtabs( | 
| 290 | "", with(r updateLabelsTable, labelsTable = sexyTable()), | 
| 291 | "", with(r updateTheoryTable, tableWithSearcher2_returnPanel(theoryTable = sexyTable())), | 
| 292 | "", with(r updateTrainedExamplesTable, tableWithSearcher2_returnPanel(trainedExamplesTable = sexyTable())) | 
| 293 | ))); | 
| 294 | } | 
| 295 | |
| 296 |   void updateTabs {
 | 
| 297 | setTabTitles(tabs, | 
| 298 | firstLetterToUpper(nLabels(labelsByName)), | 
| 299 | firstLetterToUpper(nTheories(theories)), | 
| 300 | n2(msg2label_new.aKeys(), "Trained Example")); | 
| 301 | } | 
| 302 | |
| 303 |   void updateTheoryTable {
 | 
| 304 | L<Theory> sorted = sortedByCalculatedFieldDesc(theories, t -> | 
| 305 | t.examples == null ? null : t.examples.score()); | 
| 306 | dataToTable_uneditable(theoryTable, map(sorted, t -> litorderedmap( | 
| 307 | "Score" := renderTheoryScore(t), | 
| 308 | "Theory" := str(t)))); | 
| 309 | } | 
| 310 | |
| 311 |   Map<S, Theory> labelsToBestTheoryMap() {
 | 
| 312 | Map<S, L<Theory>> map = multiMapToMap(multiMapIndex targetLabelOfTheory(theories)); | 
| 313 | ret mapValues(map, | 
| 314 | theories -> highestBy theoryScore(theories)); | 
| 315 | } | 
| 316 | |
| 317 |   void updateLabelsTable {
 | 
| 318 | L<Label> sorted = sortedByCalculatedFieldDesc(values(labelsByName), l -> l.score()); | 
| 319 |     dataToTable_uneditable(labelsTable, map(sorted, label -> {
 | 
| 320 | Cl<Theory> bestTheories = label.bestTheories.tiedForFirst(); | 
| 321 | ret litorderedmap( | 
| 322 | "Label" := label.name, | 
| 323 | "Prediction Confidence" := renderTheoryScore(first(bestTheories)), | 
| 324 | "Best Theory" := empty(bestTheories) ? "" : | 
| 325 | (l(bestTheories) > 1 ? "[+" + (l(bestTheories)-1) + "] " : "") + first(bestTheories)); | 
| 326 | })); | 
| 327 | } | 
| 328 | |
| 329 |   S renderTheoryScore(Theory t) {
 | 
| 330 | //ret renderPosNegCounts(t.examples); | 
| 331 | ret t == null || t.examples.isEmpty() ? "" : iround(adjustConfidence(threeB1BScore(t.examples))) + "%" | 
| 332 | + " / " + renderPosNegScoreAndCount(t.examples); | 
| 333 | } | 
| 334 | |
| 335 |   int theoryScore(Theory t) {
 | 
| 336 | ret t == null ? -100 : t.examples.score(); | 
| 337 | } | 
| 338 | |
| 339 |   void theoriesChanged {
 | 
| 340 | updateTheoryTable(); | 
| 341 | updateLabelsTable(); | 
| 342 | updateTabs(); | 
| 343 | updatePredictions(); | 
| 344 | change(); | 
| 345 | } | 
| 346 | |
| 347 | visual | 
| 348 | withCenteredButtons(super, | 
| 349 | "Show random msg", rInThinkQ(r showRandomMsg), | 
| 350 | jPopDownButton_noText(flattenObjectArray( | 
| 351 | "Check theories", rInThinkQ(r checkAllTheories), | 
| 352 | "Clear theories", rInThinkQ(r clearTheories), | 
| 353 | "Update predictions", rInThinkQ(r updatePredictions), | 
| 354 | dm_importAndExportAllDataMenuItems()))); | 
| 355 | |
| 356 |   Runnable rInThinkQ(Runnable r) { ret rInQ(thinkQ, r); }
 | 
| 357 | |
| 358 |   void addTheory(Theory theory) {
 | 
| 359 |     if (theories.add(theory)) {
 | 
| 360 |       print("New theory: " + theory);
 | 
| 361 | addTheoryToCollectors(theory); | 
| 362 | theoriesChanged(); | 
| 363 | } | 
| 364 | } | 
| 365 | |
| 366 |   void clearTheories { theories.clear(); theoriesChanged(); }
 | 
| 367 | |
| 368 |   Bool checkMsgProp(O prop, Msg msg) {
 | 
| 369 | if (prop cast And) ret checkMsgProp(prop.a, msg) && checkMsgProp(prop.b, msg); | 
| 370 | if (prop cast Not) ret not(checkMsgProp(prop.a, msg)); | 
| 371 | ret ((MsgProp) prop).check(msg); | 
| 372 | } | 
| 373 | |
| 374 |   Bool evalTheoryLHS(Theory theory, Msg msg) {
 | 
| 375 | ret theory == null ? null | 
| 376 | : checkMsgProp(theory.statement.lhs, msg); | 
| 377 | } | 
| 378 | |
| 379 |   Bool testTheoryOnMsg(Theory theory, Msg msg) {
 | 
| 380 | Bool lhs = evalTheoryLHS(theory, msg); | 
| 381 | Bool rhs = checkMsgProp(theory.statement.rhs, msg); | 
| 382 | if (lhs == null || rhs == null) null; | 
| 383 | if (bidiMode) | 
| 384 | ret eq(lhs, rhs); | 
| 385 | else | 
| 386 | ret isTrue(rhs) || isFalse(lhs); | 
| 387 | } | 
| 388 | |
| 389 |   void checkAllTheories {
 | 
| 390 | for (Theory theory : theories) | 
| 391 | checkTheory_noTrigger(theory); | 
| 392 | theoriesChanged(); | 
| 393 | } | 
| 394 | |
| 395 |   void checkTheory(Theory theory) {
 | 
| 396 | checkTheory_noTrigger(theory); | 
| 397 | theoriesChanged(); | 
| 398 | } | 
| 399 | |
| 400 |   void checkTheory_noTrigger(Theory theory) {
 | 
| 401 | new PosNeg<Msg> pn; | 
| 402 | for (Msg msg : msgs) | 
| 403 | pn.add(msg, testTheoryOnMsg(theory, msg)); | 
| 404 |     if (!eq(theory.examples, pn)) {
 | 
| 405 | removeTheoryFromCollectors(theory); | 
| 406 | theory.examples = pn; | 
| 407 | addTheoryToCollectors(theory); | 
| 408 | change(); | 
| 409 | } | 
| 410 | } | 
| 411 | |
| 412 |   S cleanLabel(S label) { ret upper(label); }
 | 
| 413 | |
| 414 |   S targetLabelOfTheory(Theory theory) {
 | 
| 415 | O o = theory.statement.rhs; | 
| 416 | if (o cast HasLabel) ret o.label; | 
| 417 | if (o cast DoesntHaveLabel) ret o.label; | 
| 418 | null; | 
| 419 | } | 
| 420 | |
| 421 |   void addTheoryToCollectors(Theory theory) {
 | 
| 422 | S lbl = targetLabelOfTheory(theory); | 
| 423 | if (lbl != null) | 
| 424 | labelByName(lbl).bestTheories.add(theory); | 
| 425 | } | 
| 426 | |
| 427 |   void removeTheoryFromCollectors(Theory theory) {
 | 
| 428 | S lbl = targetLabelOfTheory(theory); | 
| 429 | if (lbl != null) | 
| 430 | labelByName(lbl).bestTheories.remove(theory); | 
| 431 | } | 
| 432 | |
| 433 |   Label labelByName(S name) {
 | 
| 434 | ret getOrCreate(labelsByName, name, () -> new Label(name)); | 
| 435 | } | 
| 436 | |
| 437 |   void updateLabelsByName() {
 | 
| 438 | for (S lbl : allLabels) | 
| 439 | labelByName(lbl); | 
| 440 | for (Theory t : theories) | 
| 441 | addTheoryToCollectors(t); | 
| 442 | } | 
| 443 | |
| 444 |   O getMsgFeature(Msg msg, S feature) {
 | 
| 445 | ret msg2features.get(msg).get(feature); | 
| 446 | } | 
| 447 | |
| 448 |   void makeTextExtractors(S textFeature) {
 | 
| 449 |     for (WithName<IF1<S, O>> f : textExtractors()) {
 | 
| 450 | IF1<S, O> theFunction = f!; | 
| 451 | featureExtractors.put(f.name, env -> theFunction.get((S) env.getFeature(textFeature))); | 
| 452 | } | 
| 453 | } | 
| 454 | |
| 455 |   L<WithName<IF1<S, O>>> textExtractors() {
 | 
| 456 | new L<WithName<IF1<S, O>>> l; | 
| 457 |     l.add(WithName<>("number of words", lambda1 numberOfWords));
 | 
| 458 |     l.add(WithName<>("number of characters", lambda1 l));
 | 
| 459 |     for (char c : characters("\"', .-_"))
 | 
| 460 |       l.add(WithName<>("contains " + quote(c), s -> contains(s, c)));
 | 
| 461 | ret l; | 
| 462 | } | 
| 463 | } | 
download show line numbers debug dex old transpilations
Travelled to 7 computer(s): bhatertpkbcr, mqqgnosmbjvj, pyentgdyhuwx, pzhvpgtvlbxg, tvejysmllsmz, vouqrxazstgt, xrpafgyirdlv
No comments. add comment
| Snippet ID: | #1027773 | 
| Snippet name: | Auto Classifier v1[learning message classifier] | 
| Eternal ID of this version: | #1027773/179 | 
| Text MD5: | 970ed7539dfbe1b678b0fc42a7f08fda | 
| Transpilation MD5: | 567e1aa73e99525599ccc46d760825dd | 
| Author: | stefan | 
| Category: | javax / a.i. | 
| Type: | JavaX source code (Dynamic Module) | 
| Public (visible to everyone): | Yes | 
| Archived (hidden from active list): | No | 
| Created/modified: | 2020-05-07 14:04:38 | 
| Source code size: | 14798 bytes / 463 lines | 
| Pitched / IR pitched: | No / No | 
| Views / Downloads: | 471 / 5956 | 
| Version history: | 178 change(s) | 
| Referenced in: | [show references] |