// all sizes+addresses are in ints (4 bytes) // To make this a real persistent solution, TODO: // -save pointer to "root object" (in address 0?) // -persist freeList sclass ManagedIntObjects_v1 implements IIntMemory { replace Addr with int. replace BoxedAddr with Int. int[] mem = new int[0]; new FreeList freeList; Addr rootPtrLocation; // always 0 *() { rootPtrLocation = alloc(reservedSpaceAtBeginning()); // so 0 is usable as the null pointer } // overridable public long size() { ret mem.length; } public int get(Addr i) { ret mem[i]; } public void set(Addr i, int val) { mem[i] = val; } swappable void onMemorySizeChanged() {} void ensureCapacity(int size) { if (memorySize() < size) setMemorySize(roundUpToPowerOfTwo(size)); } void setMemorySize(int newSize) { int size = memorySize(); if (newSize == size) ret; if (newSize < size) unimplemented("Shrinking memory"); freeList.add(IntRange(size, newSize)); mem = resizeIntArray(mem, newSize); onMemorySizeChanged(); } void growMemory() { setMemorySize(max(1, memorySize()*2)); } // all allocated ranges are filled with zero int alloc(int length) { IntRange r; while ((r = freeList.findFreeSpace(length)) == null) growMemory(); freeList.remove(IntRange(r.start, r.start+length)); ret r.start; } void free(int start, int length) { if (length == 0) ret; freeList.add(IntRange(start, start+length)); Arrays.fill(mem, start, start+length, 0); } final int memorySize() { ret mem.length; } final public int read(Addr i) { ret get(i); } final void write(Addr i, int val) { set(i, val); } // words a pointer requires int sizeOfPointer() { ret 1; } int wordSizeInBytes() { ret 4; } public Addr nullPtr() { ret 0; } // convenience pointer array handling (memory layout: length + data) L pointerArray(Addr addr) { if (addr == 0) null; int size = get(addr); ret new RandomAccessAbstractList() { public int size() { ret size; } public BoxedAddr get(int i) { rangeCheck(i, size); ret read(addr+1+i); } public Int set(int i, Int val) { rangeCheck(i, size); Int old = get(i); write(addr+1+i, val); ret old; } }; } Addr newPointerArray(int size) { Addr a = alloc(size+1); set(a, size); ret a; } void freePointerArray aka freeIntArray(Addr a) { if (a != 0) free(a, read(a)+1); } Addr newIntArray(int[] array) { if (array == null) ret 0; int n = l(array); Addr ptr = alloc(n+1); set(ptr, n); for i to n: set(ptr+1+i, array[i]); ret ptr; } // a can be nullPtr(), then we just make a new array Addr resizePointerArray(Addr a, int newSize) { ifdef ManagedIntObjects_v1_debug printFunctionCall resizePointerArray(a, newSize); endifdef if (a == 0) ret newPointerArray(newSize); int oldSize = get(a); if (oldSize == newSize) ret a; Addr a2 = newPointerArray(newSize); arraycopy(mem, a+1, mem, a2+1, min(oldSize, newSize)); ret a2; } // even more convenient typed object array handling as List L objectArray(Addr addr, IF1 wrapPointer) { ret convertListElementsBothWays( wrapPointer, element -> element.addr, pointerArray(addr)); } int totalFree() { ret freeList.totalFree(); } int reservedSpaceAtBeginning() { ret 1; } void collectAndCompact(IManagedObject rootObject) { ManagedIntObjects_v1_Collector collector = new(this); if (rootObject != null) rootObject.scanForCollection(collector); collector.collectAndCompact(); } void printStats { print("Managed memory size: " + toM(size()*(long) wordSizeInBytes()) + " MB, free: " + ratioToIntPercent(freeList.totalFree(), size()) + "%"); } // +1, actually int highestUsedWord() { IntRange r = freeList.highestFreeRange(); ret r != null && r.end == size() ? r.start : (int) size(); } void saveToFile(File f) { // only save used part stream2file(IntArrayInputStream_littleEndian(mem, 0, highestUsedWord()), f); printFileInfo(f); } // we use the reserved int for a user-defined value to bootstrap // the system void setRootField(int val) { set(0, val); } int getRootField() { ret get(0); } int[] readIntArray(BoxedAddr ptr) { if (ptr == 0) null; int n = mem[ptr++]; int[] a = new[n]; arraycopy(mem, ptr, a, 0, n); ret a; } }