!7 cmodule LearnDogsVsCats > DynSingleFunctionWithPrintLog { /*switchable*/ transient File dir = userDir("dev/dogs-vs-cats/train"); LPair scaledImages; start { if (!dm_osBooting()) thread { doIt(); } } void doIt { // load scaled down test images L allImageFiles = listImageFiles(dir); Map> markingsMap = new Map; for (File f : allImageFiles) mapPutIfNemptyValue(markingsMap, f, loadImageFileMarkings(f)); pnlStruct(markingsMap); if (empty(markingsMap)) ret with print("No marked images found in " + dir); new Map iImages; for (File f : keys(markingsMap)) iImages.put(f, BWIntegralImage(f)); print("Have " + n2(iImages, "integral image") + ", total size: " + str_toM(deepObjectSize(iImages))); new L allEyeImages; for (File f : keys(markingsMap)) for (Pair mark : markingsMap.get(f)) if (eqic(mark.b, "eye")) allEyeImages.add(bwResizeSmooth(iBWImageToBWImage(clipIBWImage(virtualScaledIntegralImageBW(iImages.get(f)), mark.a)), 32)); showImage(mergeBWImagesVertically(allEyeImages)); //showImage(scaleDownUsingIntegralImageBW(random(values(iImages)), 256)); //showImage(iBWImageToBWImage(virtualScaledIntegralImageBW(random(values(iImages)), 256))); File f = random(allImageFiles()); print(f); BWIntegralImage ii = new(f); IBWImage scaled = virtualScaledIntegralImageBW(f, 256); float similarity = 0; FoundImg found = null; for (BWImage pat : allEyeImages) found = or(bwImageSearch_best_virtualBig(ii, pat, found == null ? 0f : found.sim), found); print(found); showImageWithSelections(iBWImageToBWImage(scaled), found = null ? ll() : ll(found.r)); } }