!7 concept Sentence { S text; S action; } sclass Example { L tok; int start, end; *() {} *(L *tok, IntRange subjectTokens) { start = subjectTokens.start; end = subjectTokens.end; } toString { ret quote(joinWithSpaces(tok)) + " => " + joinWithSpaces(subList(tok, start, end)); } } abstract sclass Guesser { abstract IntRange getSubjectTokens(L tok); void learn(L material) { for (Example e : material) learn(e); } void learn(Example e) {} } Guesser > G1 { IntRange getSubjectTokens(L tok) { ret new IntRange(0, 1); } } Guesser > G2 { // skips first words new StringTree1 skipTree; IntRange getSubjectTokens(L tok) { int n = walkStringTreeToLeaf(skipTree, allToLower(tok)); if (n >= 0) ret new IntRange(n, n+1); null; } void learn(Example e) { if (e.start > 0) addToStringTree(skipTree, allToLower(takeFirst(e.tok, e.start))); } } Guesser > G3 { new StringTree1 continuationTree; IntRange getSubjectTokens(L tok) { int n = walkStringTreeToLeaf(continuationTree, allToLower(tok)); if (n >= 0) ret new IntRange(0, n+1); null; } void learn(Example e) { L l = allToLower(subList(e.tok, e.start, e.end-1)); if (nempty(l)) addToStringTree(continuationTree, l); } } Guesser > Chained { new L l; *(Guesser... guessers) { addAll(l, guessers); } IntRange getSubjectTokens(L tok) { for (Guesser g : l) { IntRange result = cast pcall(g, "getSubjectTokens", tok); if (result != null) ret result; } null; } } Guesser > GCheater { new Map map; IntRange getSubjectTokens(L tok) { ret map.get(joinWithSpace(tok)); } void learn(Example e) { map.put(joinWithSpace(e.tok), intRange(e.start, e.end)); } } p { loadConceptsFrom(#1008607); L material = learningMaterial(); pnlStruct(material); G1 g1; G2 g2; G3 g3; Chained chained; checkGuesser(material, g1 = new G1); set printSuccesses; checkGuesserAfterFullLearn(material, g2 = new G2); checkGuesserAfterFullLearn(material, g3 = new G3); checkGuesserAfterFullLearn(material, new GCheater); checkGuesserAfterPartialLearn(material, new GCheater, 50); checkGuesser(material, chained = new Chained(g1, g2, g3)); printStruct(g2); printUnrolledStringTree(g2.skipTree); print(); printUnrolledStringTree(g3.continuationTree); printStruct(bestLearner(material, allNew(G1, G2, G3, GCheater), 50, 3)); } sbool printDetails, printSuccesses; static double checkGuesser(L testMaterial, Guesser g) { print(); int score = 0, n = 0; for (Example e : testMaterial) { IntRange r = cast pcall(g, "getSubjectTokens", e.tok); bool ok = eq(IntRange(e.start, e.end), r); if (ok) ++score; ++n; if (printDetails || ok && printSuccesses) if (ok) print("OK " + e); else print("FAIL " + (r == null ? "-" : joinWithSpaces(subList(e.tok, r.start, r.end))) + " for " + e); } printScore(shortClassName(g), score, n); ret ratioToPercent(score, n); } static double checkGuesserAfterFullLearn(L testMaterial, Guesser g) { g.learn(testMaterial); ret checkGuesser(testMaterial, g); } static double checkGuesserAfterPartialLearn(L testMaterial, Guesser g, double percentToLearn) { g.learn(getFirstPercent(testMaterial, percentToLearn)); ret checkGuesser(testMaterial, g); } static double checkGuesserAfterRandomizedPartialLearn(L testMaterial, Guesser g, double percentToLearn) { g.learn(getRandomPercent(testMaterial, percentToLearn)); ret checkGuesser(testMaterial, g); } // best learner with randomized x% training material // returns guesser, percentage solved static Pair bestLearner(final L material, L guessers, final double percent, int repetitions) { new Best best; for (final Guesser g : guessers) { best.put(g, repeatAndAdd_double(repetitions, func { checkGuesserAfterRandomizedPartialLearn(material, clone(g), percent) })/repetitions); ret best.pair(); } static L learningMaterial() { L out = new L; for (Sentence s) { if (s.action == null) continue; IntRange r = ai_parseSubjectAction(s.action); if (r != null) { L tok = nlTok5(s.text); r = charRangeToTokenRange(tok, r); r = IntRange((r.start | 1)/2, r.end/2); tok = codeTokens(tok); out.add(Example(tok, r)); } } ret out; }